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1 Introduction

In an economy with asymmetric information, it is difficult to achieve an efficient allocation
as an equilibrium because agents can misreport their information. Therefore, much of the
literature focuses on the constrained efficient allocation, the second-best allocation among
incentive compatible allocations, to explore its attainability within an equilibrium framework.

Prescott and Townsend (1984) is one of the pioneering studies to investigate competitive
equilibria in economies with asymmetric information. Their study has inspired numerous re-
searchers to explore various economies with asymmetric information. Rustichini and Siconolfi
(2012) consider economies with observable types, where agents’ types are observable but their
action or state are unobservable. In this situation, they demonstrate that some constrained
efficient allocation cannot be achieved as a competitive equilibrium, that is, there is no price
supporting it.

In this paper, we focus on a simple hidden information economy, which is a special
case of economies with observable types as discussed by Rustichini and Siconolfi (2012).
Our approach diverges in that we examine the feasibility of implementing a constrained
efficient allocation through a Nash equilibrium in a game structure, rather than a competitive
equilibrium. We demonstrate that, in almost all cases, achieving the constrained efficient
allocation through a subgame perfect equilibrium in a simple game is impossible. This result
aligns with the notion that there exists no price that can support a constrained efficient
allocation in a general equilibrium framework.

1.1 Related literature

We briefly review the related literature and discuss about our contribution. In the studies
about economies with asymmetric information, two main approaches exist for reaching the
constrained efficient allocation. The first is the Walrasian approach, which seeks to identify
prices that support the constrained efficient allocation within a competitive market. The sec-
ond is the Nash approach, aiming to find a Nash equilibrium that implements the constrained
efficient allocation within a game structure.

A seminal work employing the Walrasian approach is by Prescott and Townsend (1984),
who examine two crucial economies: one with moral hazard and the other with adverse
selection. They demonstrate that the welfare theorems for the constrained efficient allocation
hold in an economy with moral hazard, but may fail in one with adverse selection.

Rothschild and Stiglitz (1976) are pioneers in applying the Nash approach. They show
that a Cournot-Nash equilibrium may not exist in an economy with adverse selection. Con-
versely, in an economy with moral hazard, Bennardo and Chiappori (2003) demonstrate that
the constrained efficient allocation can be implemented by a Nash equilibrium in a simple
game.

Given the limitations of the standard approaches in economies with adverse selection,
many researchers have explored additional conditions and solution concepts to achieve the
constrained efficient allocation (Walrasian approach: Bisin and Gottardi 2006; Citanna and
Siconolfi 2016; Azevedo and Gottlieb 2017; Nash approach: Netzer and Scheuer 2014; Di-
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asakos and Koufopoulos 2018; Dosis 2018, 2019, 2022). This contrasts with the relative
success in economies with moral hazard.

However, Jerez (2005) points out a flaw in Prescott and Twonsend’s (1986) framework,
which imposes incentive compatible constraints solely on consumers, rather than firms. He
sees this restriction as a potential conceptual issue, questioning how these constraints are
enforced in a decentralized economy. He argues for viewing the incentive compatible con-
straints as restrictions on the set of allocations that firms can offer to consumers. Thus,
investigating the attainability of the constrained efficient allocation in economies with moral
hazard attached with this natural restriction is also necessary.

In situations where incentive compatible constraints are placed on firms, Rustichini and
Siconolfi (2012) take the Walrasian approach. They demonstrate that competitive equilib-
rium may not exist and the Second Welfare Theorem may fail in an economy with observable
types, including one with moral hazard.

The contribution of our paper is to take the Nash approach in a special case of economies
with observable types. We show that for almost all cases, we cannot achieve a constrained effi-
cient allocation as a Nash equilibrium in a simple game. Our impossibility result corresponds
to that there is no price that support a constrained efficient allocation.1

2 Model

We consider a simple hidden information economy. There exist one agent, m (≥ 2) identical
firms, and two objects. Let J = {1, . . . ,m} be the set of firms, and L = {1, 2} be the set
of objects. The agent has two states, g(= good) and b(= bad). Let S = {g, b} be the set of
states. Each state s ∈ S occurs with the probability qs ∈ (0, 1) such that qg + qb = 1.

Each firm contracts with the agent before the agent knows her state. A (state-dependent)
allocation is denoted by a vector x = (x1

g, x
1
b , x

2
g, x

2
b) ∈ R4, where xl

s is the net amount of
the good l ∈ L when the agent’s state is s ∈ S. The agent consumes allocations among the
consumptions set denoted by X ⊆ R4 with 0 ∈ X.

The firms know the agent’s preference, but they cannot observe the state of the agent.
The agent has a utility function u over X and the firms have a profit function π over X. We
assume that the agent and the firms share the same parameters (η1g , η

1
b , η

2
g , η

2
b ) ∈ (0, 1)4 such

that η1g + η2g = 1 and η1b + η2b = 1. The parameter ηls is the weight for the object l ∈ L when
the state is s ∈ S. By using these parameters, the agent’s utility of x ∈ X is denoted by

u(x) = qg(η
1
gv

1
g(x

1
g) + η2gv

2
g(x

2
g)) + qb(η

1
bv

1
b (x

1
b) + η2bv

2
b (x

2
b)),

= qgη
1
gv

1
g(x

1
g) + qbη

1
bv

1
b (x

1
b) + qgη

2
gv

2
g(x

2
g) + qbη

2
bv

2
b (x

2
b),

where vls : R → R is a continuous, strictly concave, strictly increasing function such that
vls(0) = 0. The firms’ profit of x ∈ X is denoted by

π(x) = −{qg(η1gx1
g + η2gx

2
g) + qb(η

1
bx

1
b + η2bx

2
b)},

= −(qgη
1
gx

1
g + qbη

1
bx

1
b + qgη

2
gx

2
g + qbη

2
bx

2
b).

1See Section 4 for more detailed discussion.
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One of important economies in our model is an insurance economy. We consider a car
insurance. Assume η1g < η1b (or equivalently η2g > η2b ). Here, object 1 represents the amount
of money the agent can obtain when he/she is involved in a traffic accident, while object 2
denotes the amount when he/she is not. In this context, η1s represents the probability of an
agent getting into a traffic accident when their state is s. Additionally, η1g < η1b indicates
that if the agent’s state is good, he/she can decrease the probability of being involved in a
traffic accident. Thus this situation reflects a car insurance economy.

2.1 Incentive compatibility and constrained efficiency

Let φ : {g, b} → {g, b} be a manipulation which the agent takes, and Φ be the set of
all manipulations. Given an allocation x ∈ X and a manipulation φ ∈ Φ, we denote a
manipulated utility by

uφ(x) = qgη
1
gv

1
g(x

1
φ(g)) + qbη

1
bv

1
b (x

1
φ(b)) + qgη

2
gv

2
g(x

2
φ(g)) + qbη

2
bv

2
b (x

2
φ(b)).

Similarly, denote a manipulated profit by

πφ(x) = qgη
1
gx

1
φ(g) + qbη

1
bx

1
φ(b) + qgη

2
gx

2
φ(g) + qbη

2
bx

2
φ(b).

Let φI ∈ Φ be the truth-telling manipulation, that is, φI(g) = g and φI(b) = b. Let φG ∈ Φ
be a manipulation such that she always reports the good state, that is, φG(g) = φG(b) = g.
We similarly define φB ∈ Φ by φB(g) = φB(b) = b. Let φE be a manipulation such that she
exchanges her states to report, that is, φE(g) = b and φE(b) = g. We can rewrite the set of
manipulations by Φ = {φI ,φG,φB,φE}.

An allocation x ∈ X is feasible if qgx1
g + qbx1

b ≤ 0 and qgx2
g + qbx2

b ≤ 0. Let XF ⊆ X
be the set of all feasible allocations. An allocation x ∈ X is incentive compatible if for
each φ ∈ Φ, u(x) ≥ uφ(x). Let XIC ⊆ X be the set of incentive compatible allocations. We
denote the set of all feasible and incentive compatible allocations by XFIC = XF ∩ XIC .
Note that, since 0 is feasible and incentive compatible, XFIC is non-empty.

An allocation x ∈ X is constrained efficient if (i) x ∈ XFIC , and (ii) there is no
x′ ∈ XFIC such that u(x′) > u(x). Let XCE ⊆ X be the set of constrained efficient
allocations.

2.2 Subgame perfect implementability

We consider the following game form:

Stage 1: Each firm j ∈ J offers a set of allocations Dj ⊆ X.
Stage 2: The agent chooses an allocation x ∈

⋃
j∈J Dj and a manipulation φ ∈ Φ.

Let D = 2X be the firms’ strategy space. Let f : D → X ×Φ be a strategy of the agent, and
F be the set of all the agent’s strategies. Given D ∈ D and f ∈ F , let xf (D) and φf (D) be
an allocation and a manipulation obtained by the strategies.
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Given D ∈ D, let 1D : X → {0, 1} be a indicator function such that for each x ∈ X,
1D(x) = 1 if x ∈ D and 1D(x) = 0 if x /∈ D. A profile of strategies ((Dj)j∈J , f) is a subgame
perfect equilibrium if

(i) for each D ∈ D,
(xf (D),φf (D)) ∈ argmax

(x,φ)∈D×Φ
uφ(x),

(ii) for each j ∈ J and D′
j ∈ D,

1Dj(x
f (D))∑

k∈J 1Dk
(xf (D))

πφf (D)(x
f (D)) ≥

1D′
j
(xf (D′))

1D′
j
(xf (D′)) +

∑
k ̸=j 1Dk

(xf (D′))
πφf (D′)(x

f (D′)),

where D = ∪k∈JDk and D′ = D′
j ∪ (

⋃
k ̸=j Dk). The first condition is about the agent’s

optimality, and the second condition is about the firms’ optimality.

An allocation x ∈ X is subgame perfect implementable if there exists a subgame
perfect equilibrium ((Dj)j∈J , f) ∈ Dm × F such that (xf (D),φf (D)) = (x,φI), where D =⋃

j∈J Dj.

3 Result

Our main result states that if the parameters are not symmetric, then any non-zero con-
strained efficient allocation is not subgame perfect implementable.

Theorem 1. Assume that η1g ̸= η1b or η2g ̸= η2b . Then, for each x ∈ XCE \ {0}, x is not
subgame perfect implementable.

In the following, we undertake the proof of Theorem 1. Initially, we present some pre-
liminary results. Subsequently, we analyze certain properties of the constrained efficient
allocation. Finally, we proceed to establish our main theorem.

3.1 Preliminaries

The first result shows the necessary and sufficient condition for incentive compatibility.

Lemma 1. For each x ∈ X, x ∈ XIC if and only if u(x) ≥ uφG(x) and u(x) ≥ uφB(x).

Proof. Let x ∈ X. If x ∈ XIC , then u(x) ≥ uφG(x) and u(x) ≥ uφB(x) are obvious. Thus,
assume u(x) ≥ uφG(x) and u(x) ≥ uφB(x), and show u(x) ≥ uφE(x). By definition,

uφG(x) + uφB(x)

=
(qgη

1
gv

1
g(x

1
g) + qbη

1
bv

1
b (x

1
g) + qgη

2
gv

2
g(x

2
g) + qbη

2
bv

2
b (x

2
g))

+ (qgη
1
gv

1
g(x

1
b) + qbη

1
bv

1
b (x

1
b) + qgη

2
gv

2
g(x

2
b) + qbη

2
bv

2
b (x

2
b))

= u(x) + uφE(x).
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Hence, by u(x) ≥ uφG(x) and u(x) ≥ uφB(x),

u(x) + u(x) ≥ uφG(x) + uφB(x) = u(x) + uφE(x),

which implies u(x) ≥ uφE(x). Therefore, x ∈ XCE.

Given x ∈ X, by a simple calculation,

u(x) ≥ uφG(x)

⇔
qgη

1
gv

1
g(x

1
g) + qbη

1
bv

1
b (x

1
b) + qgη

2
gv

2
g(x

2
g) + qbη

2
bv

2
b (x

2
b)

≥ qgη
1
gv

1
g(x

1
g) + qbη

1
bv

1
b (x

1
g) + qgη

2
gv

2
g(x

2
g) + qbη

2
bv

2
b (x

2
g)

⇔ qbη
1
bv

1
b (x

1
b) + qbη

2
bv

2
b (x

2
b) ≥ qbη

1
bv

1
b (x

1
g) + qbη

2
bv

2
b (x

2
g)

⇔ η1b (v
1
b (x

1
b)− v1b (x

1
g)) ≥ η2b (v

2
b (x

2
g)− v2b (x

2
b)).

In the same way, we can show that u(x) ≥ uφB(x) if and only if η2g(v
2
g(x

2
g) − v2g(x

2
b)) ≥

η1g(v
1
g(x

1
b)− v1g(x

1
g)). Hence, we get the following result from Lemma 1.

Corollary 1. For each x ∈ X, x ∈ XIC if and only if

(i) η1b (v
1
b (x

1
b)− v1b (x

1
g)) ≥ η2b (v

2
b (x

2
g)− v2b (x

2
b)),

(ii) η2g(v
2
g(x

2
g)− v2g(x

2
b)) ≥ η1g(v

1
g(x

1
b)− v1g(x

1
g)).

The next result is about the relation between the amounts of the object 1 and object 2.

Lemma 2. For each x ∈ XIC , x1
b ≥ x1

g if and only if x2
g ≥ x2

b .

Proof. Let x ∈ XIC . If x1
b ≥ x1

g, then since v1g is increasing, v1g(x
1
b) − v1g(x

1
g) ≥ 0, and so by

Corollary 1 (ii),
η2g(v

2
g(x

2
g)− v2g(x

2
b)) ≥ η1g(v

1
g(x

1
b)− v1g(x

1
g)) ≥ 0.

Since v2g is increasing, by the above inequality, x2
g ≥ x2

b . Similarly, if x2
g ≥ x2

b , then by
Corollary 1 (i), x1

b ≥ x1
g.

3.2 Properties

The first result states that for any non-zero constrained efficient allocation, at least one
incentive compatible constraint holds with strict inequality.

Proposition 1. For each x ∈ XCE \ {0}, u(x) > uφG(x) or u(x) > uφB(x).

Proof. Let x ∈ XCE \ {0}. Suppose that u(x) = uφG(x) and u(x) = uφB(x). We show
u(x) < 0 = u(0). This is a contradiction to constrained efficiency because 0 is feasible and
incentive compatible.

Without loss of generality, assume x1
b ≥ x1

g. The converse case can be demonstrated
similarly. If x1

b = x1
g, then by Lemma 2, x2

g = x2
b , and so by feasibility, x1

g = x1
b = x2

g = x2
b = 0.

However, this contradicts x ̸= 0. Hence, x1
b > x1

g. By Lemma 2, x2
g > x2

b .
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We show that η1gv
1
g(x

1
g)+η2gv

2
g(x

2
g) < 0 and η1bv

1
b (x

1
b)+η2bv

2
b (x

2
b) < 0. These two inequalities

imply u(x) < 0. Since we can prove each inequality in the same way, we only show η1gv
1
g(x

1
g)+

η2gv
2
g(x

2
g) < 0. By x1

g < x1
b and feasibility, qgx1

g + qbx1
g < qgx1

g + qbx1
b ≤ 0, and so x1

g < 0.
Similarly, by x2

b < x2
g and feasibility, x2

b < 0.

Case 1: x1
g < x1

b ≤ 0.

By Corollary 1 (ii),

η2gv
2
g(x

2
g) <

0>x2
b

η2g(v
2
g(x

2
g)− v2g(x

2
b)) =

u(x)=uφB
(x)

η1g(v
1
g(x

1
b)− v1g(x

1
g)) ≤

x1
b≤0

−η1gv
1
g(x

1
g),

and so η1gv
1
g(x

1
g) + η2gv

2
g(x

2
g) < 0.

Case 2: x1
g < 0 < x1

b.

If x2
g ≤ 0, then by x1

g < 0, η1gv
1
g(x

1
g) + η2gv

2
g(x

2
g) < 0. Hence, we assume x2

g > 0. By x2
b < 0,

x2
b < 0 < x2

g. By strict concavity,

x1
b

x1
b − x1

g

· v1g(x1
g) +

−x1
g

x1
b − x1

g

· v1g(x1
b) < v1g

(
x1
b

x1
b − x1

g

· x1
g +

−x1
g

x1
b − x1

g

· x1
b

)
= v1g(0) = 0. (1)

By (1),

− v1g(x
1
g) +

(
x1
b

x1
b − x1

g

· v1g(x1
g) +

−x1
g

x1
b − x1

g

· v1g(x1
b)

)
< −v1g(x

1
g) + 0

⇔
x1
g

x1
b − x1

g

· v1g(x1
g) +

−x1
g

x1
b − x1

g

· v1g(x1
b) < −v1g(x

1
g)

⇔
−x1

g

x1
b − x1

g

· (v1g(x1
b)− v1g(x

1
g)) < −v1g(x

1
g)

⇔
−x1

g

x1
b − x1

g

· η1g(v1g(x1
b)− v1g(x

1
g)) < −η1gv

1
g(x

1
g) (2)

In the same way, by x2
b < 0 < x2

g and strict concavity, we can show

η2gv
2
g(x

2
g) <

x2
g

x2
g − x2

b

· η2g(v2g(x2
g)− v2g(x

2
b)). (3)

By feasibility,

x2
g

x2
g − x2

b

≤
qgx2

g+qbx2
b≤0

qbx2
g − qbx2

b

x2
g − x2

b

= qb =
qbx1

b − qbx1
g

x1
b − x1

g

≤
qgx1

g+qbx1
b≤0

−x1
g

x1
b − x1

g

. (4)

By u(x) = uφB(x) and Corollary 1 (ii),

η2g(v
2
g(x

2
g)− v2g(x

2
b)) = η1g(v

1
g(x

1
b)− v1g(x

1
g)). (5)
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Hence,

η2gv
2
g(x

2
g) <

(3)

x2
g

x2
g − x2

b

· η2g(v2g(x2
g)− v2g(x

2
b)) ≤

(4,5)

−x1
g

x1
b − x1

g

· η1g(v1g(x1
b)− v1g(x

1
g)) <

(2)
−η1gv

1
g(x

1
g),

and so η1gv
1
g(x

1
g) + η2gv

2
g(x

2
g) < 0.

Similarly, we can show η1bv
1
b (x

1
b) + η2bv

2
b (x

2
b) < 0, and so u(x) < 0.

The next result states that the feasibility constraints are binding for any constrained
efficient allocation.

Proposition 2. For each x ∈ XCE, qgx1
g + qbx1

b = 0 and qgx2
g + qbx2

b = 0.

Proof. Let x ∈ XCE. If x = 0, then the result is obvious, and so we assume x ∈ XCE \ {0}.
By x ∈ XCE \ {0} and Proposition 1, u(x) > uφG(x) or u(x) > uφB(x). We only show
qgx1

g + qbx1
b = 0 since we can prove qgx2

g + qbx2
b = 0 in the same way. To show the result,

suppose qgx1
g + qbx1

b < 0.
Without loss of generality, assume u(x) > uφG(x). We can derive a contradiction in the

same way for the case u(x) > uφB(x). By u(x) > uφG(x) and Corollary 1 (i), η1b (v
1
b (x

1
b) −

v1b (x
1
g)) > η2b (v

2
b (x

2
g)− v2b (x

2
b)). Let ε > 0 be such that qg(x1

g + ε) + qbx1
b < 0 and

η1b (v
1
b (x

1
b)− v1b (x

1
g)) > η1b (v

1
b (x

1
b)− v1b (x

1
g + ε)) > η2b (v

2
b (x

2
g)− v2b (x

2
b)). (6)

By Corollary 1 (ii),

η2g(v
2
g(x

2
g)− v2g(x

2
b)) ≥ η1g(v

1
g(x

1
b)− v1g(x

1
g)) > η1g(v

1
g(x

1
b)− v1g(x

1
g + ε)) (7)

Hence, by (6), (7), and Corollary 1, (x1
g+ε, x1

b , x
2
g, x

2
b) is incentive compatible. However, since

u(x1
g + ε, x1

b , x
2
g, x

2
b) > u(x) and (x1

g + ε, x1
b , x

2
g, x

2
b) is feasible, this contradicts constrained

efficiency.

3.3 Proof of Theorem 1

Finally, we show Theorem 1.

Proof of Theorem 1. Without loss of generality, assume η1g > η1b . By η1g + η2g = 1 and
η1b + η2b = 1, η2g < η2b . Let x ∈ XCE \ {0}. If x1

g = x1
b , then by Lemma 2 and Proposition 2,

x1
g = x1

b = x2
g = x2

b = 0. However, this contradicts x ∈ XCE \ {0}. Hence, x1
g ̸= x1

b .

Case 1: x1
g > x1

b .

By Lemma 2, x2
g < x2

b . By Proposition 2, x1
g > 0 > x1

b and x2
g < 0 < x2

b . By η1g > η1b ,
x1
g > 0 > x1

b and Proposition 2,

qgη
1
gx

1
g + qbη

1
bx

1
b > qgη

1
bx

1
g + qbη

1
bx

1
b = 0. (8)

By η2g < η2b , x
2
g < 0 < x2

b and Proposition 2,

qgη
2
gx

2
g + qbη

2
bx

2
b > qgη

2
gx

2
g + qbη

2
gx

2
b = 0. (9)
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By (8) and (9), π(x) < 0. If a firm j offers {0}, then j’s profit becomes zero. Hence, x is not
subgame perfect implementable.

Case 2: x1
g < x1

b .

By Lemma 2, x2
g > x2

b . By Proposition 2, x1
g < 0 < x1

b and x2
g > 0 > x2

b . By η1g > η1b ,
x1
g < 0 < x1

b and Proposition 2,

qgη
1
gx

1
g + qbη

1
bx

1
b < qgη

1
gx

1
g + qbη

1
gx

1
b = 0. (10)

By η2g < η2b , x
2
g > 0 > x2

b and Proposition 2,

qgη
2
gx

2
g + qbη

2
bx

2
b < qgη

2
bx

2
g + qbη

2
bx

2
b = 0. (11)

By (10) and (11), π(x) > 0. By x ∈ XCE \ {0} and Proposition 1, u(x) > uφG(x) or
u(x) > uφB(x). Without loss of generality, assume u(x) > uφG(x). By Corollary 1 (i),
η1b (v

1
b (x

1
b)−v1b (x

1
g)) > η2b (v

2
b (x

2
g)−v2b (x

2
b)). Let ε > 0 be such that π(x) > π(x1

g+ε, x1
b , x

2
g, x

2
b) >

1
mπ(x) and

η1b (v
1
b (x

1
b)− v1b (x

1
g)) > η1b (v

1
b (x

1
b)− v1b (x

1
g + ε)) > η2b (v

2
b (x

2
g)− v2b (x

2
b)). (12)

By Corollary 1 (ii),

η2g(v
2
g(x

2
g)− v2g(x

2
b)) ≥ η1g(v

1
g(x

1
b)− v1g(x

1
g)) > η1g(v

1
g(x

1
b)− v1g(x

1
g + ε)). (13)

Let y = (x1
g+ε, x1

b , x
2
g, x

2
b). By (12), (13) and Corollary 1, u(y) > min{uφG(y), uφB(y), uφE(y)}.

If firm j offers {y}, then by u(y) > u(x) and u(y) > min{uφG(y), uφB(y), uφE(x)}, the agent
chooses y and takes φI . Hence, by π(y) > 1

m(x), x is not subgame perfect implementable. !

4 Discussion

In this section, we explore the relationship between our result and Rustichini and Siconolfi’s
(2012) result, hereafter referred to as H&S. To accomplish this, we begin by defining a com-
petitive equilibrium. Let σ ∈ ∆(X) be a lottery on X, and let p ∈ RX be a price vector over
X. A pair (σ, p) is a competitive equilibrium if (i) σ ∈ argmaxσ′∈∆(X)

∑
x∈X u(x)σ′(x)

subject to
∑

x∈X p(x)σ′(x) ≤ 0, (ii) σ ∈ argmaxσ′∈∆(XFIC) p(x)σ
′(x), and (iii) σ ∈ ∆(XF ).

The first condition is about utility maximization, the second is about profit maximization,
and the third is feasibility condition.

Given x ∈ X, let δx ∈ ∆(X) be the degenerate lottery such that δx(x) = 1 and δx(x′) = 0
for x′ ̸= x. To be consistent with H&S’s model, given a equilibrium price p, the profit
function must satisfy π(x) =

∑
x′∈X p(x′)δx(x′) = p(x) for all x ∈ X.

R&H establish the existence of competitive equilibria through two steps. First, they
identify a price vector that supports the constrained efficient allocation, i.e., the allocation
maximizes agent’s utility at the price. Next, they verify whether the constrained efficient
allocation maximizes the firm’s profit under the obtained price.
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R&H show the necessary and sufficient condition for a price vector to support the con-
strained efficient allocation, termed the price supportability condition. If the constrained
efficient allocation is degenerate for x, then the price supportability condition says that
p(x) = 0 and for each x′ ̸= x, p(x′) ≥ 0. As we have shown in Theorem 1, if parameters
ηls are asymmetric, then it follows that π(x) ̸= 0, and hence p(x) ̸= 0. Thus, the result of
Theorem 1 is attributed to the absence of price supportability.

Finally, we illustrate that even when the price supportability condition is satisfied and the
profit is maximized, indicating the existence of a competitive equilibrium, the constrained
efficient allocation is not subgame perfect implemtnable. This distinction arises from the fact
that firms only offer feasible allocations in R&S’s model, whereas they can offer non-feasible
allocations in ours.

Example 1. Let qg = qb = 0.5 and η1g = η1b = η2g = η2b = 0.5. Let u be such that for each
x ∈ X,

u(x) = x1
g(2− x1

g) + 3x1
b(2− x1

b) + 6x2
g(2− x2

g) + 2x2
b(2− x2

b).

Then, x∗ = (−0.5, 0.5, 0.5,−0.5) is the unique constrained efficient allocation. By π(x∗) = 0,
the price supportability condition is satisfied. Moreover, for each x ∈ XFIC , feasibility
conditions, qgx1

g + qbx1
b ≤ 0 and qgx2

g + qbx2
b ≤ 0, and symmetric parameters, η1g = η1b and

η2g = η2b , imply the nonpositive profit π(x) ≤ 0. Thus, x∗ maximizes the profit over XFIC ,
and so (x∗, p∗) is a competitive equilibrium, where p∗(x) = π(x) for x ∈ X.

However, x∗ is not subgame perfect implementable. To see this, let x̃ = (−0.64, 0.5, 0.6,−0.5).
Then,

u(x̃) = −1.6896 + 2.25 + 5.04− 2.5 = 3.1004,

uφG(x̃) = −1.6896− 5.0688 + 5.04 + 1.68 = −0.0384,

uφB(x̃) = 0.75 + 2.25− 7.5− 2.5 = −7,

π(x̃) = −0.25(−0.64 + 0.5 + 0.6− 0.5) = 0.01.

Hence, by u(x̃) = 3.1004 > 3 = u(x∗), u(x̃) > min{uφG(x̃), uφB(x̃), uφE(x̃)}, and π(x̃) =
0.01 > 0 = π(x∗), x∗ is not subgame perfect implementable. This is because we assume that
the firms can offer non-feasible allocations in the game.

5 Conclusion

In this study, we examine a simple hidden information economy. We demonstrate that when
the parameters of a utility function exhibit asymmetry, any non-zero constrained efficient
allocation is not subgame perfect implementable. We leave the question of subgame perfect
implementability open in the case of symmetric parameters.
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