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Abstract

This paper considers a Bayesian learning problem where strategic play-
ers jointly learn an unknown economic state θ , and show that one’s higher-
order misspecification (i.e., one’s misspecification about the opponent’s mis-
specification) can have a significant impact on the equilibrium outcome. We
consider a simple environmental problem where players’ production, as well
as an unknown state θ , affects the quality of the environment. Crucially, we
assume that one of the players is unrealistically optimistic about the quality
of the environment. When this optimism is common knowledge, the equi-
librium outcome is continuous in the amount of optimism, and hence small
optimism leads to approximately correct learning of the state θ . In contrast,
when the optimism is not common knowledge and each player is unaware
of the opponent having a different view about the world, the equilibrium
outcome is discontinuous, and even vanishingly small optimism leads to
completely incorrect learning. We then analyze a general Bayesian learning
model and discuss when such discontinuity arises.
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1 Introduction

Economic agents often take actions based on a misspecified view about the world:
A worker may be overconfident about his own capability, a firm may incorrectly
assume that the demand function is linear in prices (in reality, the demand is
non-linear), an investor may incorrectly believe that the economy is driven by
fewer variables, and so on.1 Recent literature on model misspecification studies
how such a bias influences the agents’ behavior and payoffs, assuming either a
single-agent setup or a multi-agent setup in which the agents’ misspecifications
are common knowledge (e.g., Esponda and Pouzo, 2016; Heidhues, Kőszegi, and
Strack, 2018; Ba and Gindin, 2023). However, this common knowledge assump-
tion leaves out many potential applications, as it does not allow players’ higher-
order misspecification. For example, when a worker is overconfident about his
own capability, his colleague may not be aware of it; in this case, this colleague
has a misspecified view about the opponent’s view about the world.

This paper shows that such higher-order misspecification has a significant im-
pact on players’ play. In particular, we find that even a negligible amount of mis-
specification can drastically change the equilibrium outcome. To illustrate this,
we consider a simple model of an environmental problem with two players. There
are infinitely many periods, and the players’ production, as well as an unknown
state θ , influences the quality of the environment each period. We assume that one
of the players (say, player 2) is misspecified and is unrealistically optimistic about
the quality of the environment. Players are myopic, and actions are unobservable.

In Section 2, we consider a benchmark case in which the players do not have
higher-order misspecification, and each player correctly understands the oppo-
nent’s view about the world. That is, player 1 knows that she is more pessimistic
than player 2, while player 2 knows that she is more optimistic than player 1.
(Also, these beliefs are common knowledge.) In this case, we find that after a

1As experimental and empirical evidence, people exhibit overconfidence in strategic entries
(Camerer and Lovallo, 1999), corporate investments (Malmendier and Tate, 2005), and merger
decisions (Malmendier and Tate, 2008). See Daniel and Hirshleifer (2015), Malmendier and Tate
(2015), and Grubb (2015) for reviews of the literature.
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long time, the players’ beliefs about the unknown state θ converge to a steady
state almost surely, regardless of the initial common prior. This steady state out-
come is continuous with respect to the level of player 2’s bias (optimism). So
when player 2’s bias is small, its impact on the long-run outcome is small, i.e.,
after a long time, the players have approximately correct beliefs about θ .

Then Section 3 considers the model with higher-order misspecification, where
the players are unaware of the opponent having a different view about the world.
Specifically, player 2 is optimistic about the environment, and on top of that, she
naively thinks that the opponent shares the same view with her. (In reality, player 1
isn’t optimistic.) Similarly, player 1 has the unbiased view about the environment,
and naively thinks that player 2 also has the unbiased view.

As in the benchmark case, when player 2’s optimism is small, there is a steady
state in which the players learn the true state θ ∗ almost correctly. However, it
turns out that this steady state is unstable, and the players’ beliefs converge there
with zero probability; indeed, the players’ beliefs tend to be polarized over time,
and they converge to a boundary point almost surely. This result shows that the
players’ higher-order misspecification has a significant impact on the long-run
equilibrium outcome. With small optimism of player 2, the players approximately
learn the true state if the optimism is common knowledge, while their beliefs
converge to boundary points if the players are unaware of the opponent having a
different view about the world.

Our result also shows discontinuity of the equilibrium outcome with respect
to the information structure. Indeed, the players’ long-run beliefs are concen-
trated on the true state in the case of no misspecification, but these beliefs jump
to boundary points once player 2 has (even vanishingly small) optimism. One
may think that this discontinuity contradicts with various continuity results in the
literature on incomplete information; e.g., Chen, Di Tillio, Faingold, and Xiong
(2017) show that a small change in information structure can have only a small
impact on equilibrium in any normal-form game. We will explain how to reconcile
this in Section 3.3.

In our model, instability of the steady state is closely related to the inferen-
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tial naivety arising from the players’ higher-order misspecification. Since player
1 is unaware of player 2’s optimism, she believes that player 2 will maximize
payoffs and update the belief given the unbiased view about the environment (but
in reality, player 2 does so given the optimistic view about the world). It turns
out that this inferential naivety (about the opponent’s action and belief) is rein-
forced through learning in our model; a small gap between one’s belief about the
opponent’s belief (about the state) and the opponent’s actual belief can become
arbitrarily large after a long time. As we will explain in Section 3.3, this is the
source of the instability of the steady state.

Recent work by Frick, Iijima, and Ishii (2020) shows that a small misspeci-
fication can lead to a complete breakdown of correct learning, in the context of
social learning. In their model, agents observe the opponents’ actions every period
and learn a payoff-relevant unknown state from it. The agents are misspecified in
that they have incorrect views about how the opponents interpret information (and
hence they have incorrect views about the opponents’ behavior). They show that a
steady state is discontinuous in the amount of misspecification, and in particular,
even with a vanishingly small amount of misspecification, in the unique steady
state, the agents have a point-mass belief on a state which is far away from the
true state.

Frick, Iijima, and Ishii (2020) also argue that their result relies on the assump-
tion that the agents have only a limited amount of information about the state, in
that the agents observe a noisy signal about the state only once. (So the agents
learn mostly from the opponents’ actions, and in this sense it is a model of social
learning.) Indeed, they show that if the agents observe signals in every period
of the infinite-horizon model, then the result is overturned and steady states are
continuous in the amount of misspecification. So one may naturally expect that
a small misspecification can destroy correct learning in social learning models,
but not in models where agents receive feedbacks (signals) repeatedly. Note that
repeated feedbacks are common in many economic applications; e.g., if agents
observe their own payoffs every period, then it is a model of repeated feedbacks,
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as payoffs are informative about the state in general.2

Our result shows that such a conjecture is not true, and a small misspecifi-
cation can still have a huge impact on the learning outcome even in a model of
repeated feedbacks. In our model, when the agents become slightly misspecified,
the probability of the belief converging to the steady state suddenly drops from
one to zero. So even though a small misspecification has only a negligible impact
on the steady state, it leads to a complete breakdown of correct learning. This is
a new mechanism which causes discontinuity of the learning outcome, and in this
sense our work complements Frick, Iijima, and Ishii (2020).

In Section 3.4, we extend this non-convergence result to a general setup, and
study when a small amount of misspecification leads to a complete breakdown of
correct learning. We find that learning tends to be fragile when the state θ and
one’s belief about the state θ have opposite impacts on the outcome. As we will
explain, this condition can be satisfied in a wide range of economic applications,
such as team production and Cournot competition.

To prove the fragility of correct learning, we extend the non-convergence re-
sult of Pemantle (1990), which shows that if a steady state of a stochastic process
is unstable in some sense, then the process converges there with zero probability.
His theorem does not apply to our setup directly, for three reasons. First, we as-
sume that players observe public signals and update their beliefs, so the stochastic
shocks on these beliefs are perfectly correlated. Assumption (iii) in Theorem 1
of Pemantle does not allow such a correlation. Second, we consider a Gaussian
noise, which violates the bounded support assumption of Pemantle. Third, the
drift term of our stochastic process involves a perturbation term, which is not con-
sidered by Pemantle.3 We show that these features do not cause a serious problem,
and the result of Pemantle remains valid in our environment. We believe that this

2Frick, Iijima, and Ishii (2020) assume that the agents do not observe payoffs.
3Benaı̈m (1999) also prove a similar non-convergence theorem, but his result does not apply to

our model for the same reason. Benaı̈m and Faure (2012) prove a non-convergence result which
allows a Gaussian noise, but they assume that the process is cooperative. Also they make various
assumptions on the noise term which are not satisfied in our model (e.g., i.i.d. noise, positive-
definite assumption which rules out perfect correlation of a noise).
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result can be useful for future works which consider a stochastic process similar
to ours (in particular, problems in which stochastic shocks are Gaussian or shocks
on multiple variables are perfectly correlated).

2 First-Order Misspecification

2.1 Setup

As a benchmark, we first consider the case in which higher-order misspecification
does not exist, i.e., each player correctly understands the opponent’s view about
the world. There are two players i = 1,2 and infinitely many periods t = 1,2, · · · .
At the beginning of the game, an unobservable economic state θ ∗ is drawn from a
closed interval Θ = [θ ,θ ], according to a common prior distribution µ ∈△Θ. We
assume that µ has a continuous density µ ′ with full support. In each period t, each
player i has a belief µ t

i ∈ △Θ about the state θ , and chooses an action xi from a
closed interval Xi = [0,xi]. Player i’s action xi is not observable by the opponent
j , i. Given an action profile x = (x1,x2), the players observe a noisy public signal
y = Q(x1,x2,a,θ ∗)+ ε , where a ∈ R is a fixed parameter and ε is a random noise
whose distribution is log-concave with mean zero. Player i’s stage-game payoff is
ui(xi,y). We assume that both Q and ui are twice continuously differentiable.

Crucially, we assume that one of the players (player 2) incorrectly believes
that the true parameter is A , a, while the other player is unbiased and knows
the parameter a. These first-order beliefs (about the parameter a) are common
knowledge, e.g., player 1 knows that player 2 believes that the true parameter is
A , a. We call it first-order misspecification, because player 2 has an incorrect
first-order belief about the parameter a.

Player 1’s subjective expected stage-game payoff given an action profile x and
a state θ is

U1(x,θ) = E[u1(x1,Q(x,a,θ)+ ε)]

and player 2’s subjective expected stage-game payoff is

U2(x,A,θ) = E[u2(x2,Q(x,A,θ)+ ε)],
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where the expectation is taken with respect to ε . Note that player 2 evaluates pay-
offs given her subjective signal distribution Q(x,A,θ)+ε . To economize notation,
we will write U2(x,θ) instead of U2(x,A,θ) when it does not cause a confusion.

We assume that players play a static Nash equilibrium every period. This
essentially means that in our model, (i) players are myopic, and (ii) they predict
the opponent’s play correctly and best-respond to it. Condition (i) shuts down the
repeated-game effect, so that a result similar to the folk theorem (which is not of
our interest) does not arise.4 Condition (ii) implies that players recognize that the
opponent also learns the state and changes the action as time goes. This setup is
different from the one in the literature on learning in games (e.g., Fudenberg and
Kreps, 1993; Esponda and Pouzo, 2016), which asks when and why players play
equilibria; they assume that players do not know the opponent’s strategy and learn
it from experience. In our model, players know the opponent’s strategy, and learn
only the unknown economic state θ .5

In period one, players play a Nash equilibrium (x1
1,x

1
2). Assuming an interior

solution, it is an action profile which solves the first-order condition ∂E[Ui(x,θ)|µ]
∂xi

=

0 for each i. At the end of period one, players observe a public signal y1, and
update the posterior beliefs using Bayes’ rule. Assuming that no one has deviated
in period one, each player i’s posterior belief µ2

1 ,µ
2
2 in period two is

µ2
1 (θ) =

µ1
1 (θ) f (y−Q(x1,a,θ))∫

Θ µ1
1 (θ̃) f (y−Q(x1,a, θ̃))dθ̃

and µ2
2 (θ) =

µ1
2 (θ) f (y−Q(x1,A,θ))∫

Θ µ1
2 (θ̃) f (y−Q(x1,A, θ̃))dθ̃

,

where x1 is the Nash equilibrium played in period one and f is the density func-
tion of the noise term ε . Note that player 2’s posterior µ2

2 differs from player
1’s posterior µ2

1 , as she incorrectly believes that the mean output is Q(x1,A,θ)
rather than Q(x1,a,θ). Because the players’ information structure about the pa-
rameter a is common knowledge, these posteriors are common knowledge among

4Another way to avoid the repeated-game effect is to use a Markov-perfect equilibrium (where
the state is players’ beliefs about θ ) as a solution concept. With an additional assumption, Ap-
pendix A shows that players’ long-run behavior is exactly the same as that of myopic players
studied in this section. In this sense, our result remains true even for forward-looking players.

5Condition (ii) is inessential if the game is dominance solvable. Note that all the examples
studied in this paper are actually dominance solvable.
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players. So in period two, players play a Nash equilibrium given the belief pro-
file µ2 = (µ2

1 ,µ
2
2 ), which solves ∂E[Ui(x,θ)|µ2

i ]
∂xi

= 0 for each i. Likewise, in any
subsequent period t, players play a Nash equilibrium given the belief profile
µ t = (µ t

1,µ
t
2), where µ t is computed by Bayes’ rule.

A steady state in this dynamic learning model is a pair (x∗1,x
∗
2,µ

∗
1 ,µ

∗
2 ) of an

action profile and a belief profile which satisfies the following four conditions:

x∗1 ∈ argmax
x1

U1(x1,x∗2,θ
∗), (1)

x∗2 ∈ argmax
x2

U2(x∗1,x2,θ2), (2)

µ∗
1 = 1θ∗ , (3)

µ∗
2 = 1θ2 s.t. θ2 ∈ argmin

θ∈Θ
|Q(x∗,A,θ)−Q(x∗,a,θ ∗)|. (4)

Conditions (1) and (2) are incentive compatibility, which requires that each player
maximizes her payoff given some beliefs. The other two conditions require that
these beliefs satisfy consistency: Condition (3) asserts that the unbiased player
1 correctly learns the true state θ ∗ in a steady state. Condition (4) requires that
player 2’s belief is concentrated on a state θ2 which best explains the data, in that
with this state θ2, player 2’s subjective view about the mean output is closest to
the actual mean. This condition must be satisfied in a steady state; otherwise,
player 2 is “surprised” by observed signals and her belief will move to the state
which better explains the data. In many economic applications (including the
environmental problem example in the next subsection), Condition (4) reduces to

Q(x∗,A,θ2) = Q(x∗,a,θ ∗), (5)

i.e., the subjective mean output exactly matches the true mean.
As we will show in Section 2.3, under a mild condition called identifiability,

players’ actions and beliefs converge to this steady state almost surely. So this
steady state can be thought of as a “long-run outcome” of the dynamic learning
model.
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2.2 Application: Optimism in Environmental Problems

To see how the steady state looks like, we will consider a model of environmen-
tal problems, which includes air pollution, deforestation, and fishery as special
cases.6 Every period, each player i = 1,2 chooses a production level xi ∈ [0,1],
which has a negative impact on the quality of the environment. As in Chapter 24
of Varian (1992), we assume that the quality of the environment is given by the
formula

y = Q(x,a,θ)+ ε = a−θ(x1 + x2)+ ε, (6)

where a ∈ R is a fixed parameter, θ ∈ Θ = [0.7,0.9] is an unknown fundamen-
tal, and ε is a noise term which follows the standard normal distribution N(0,1).
Player i’s payoff is y+ xi − c(xi), where xi is a private benefit from production
and c(xi) =

1
2x2 is a production cost. Since we assume θ ∈ (0,1), regardless of

players’ beliefs, the Nash equilibrium in the one-shot game is an interior point. In
what follows, we will assume that the true state is θ ∗ = 0.8.

We assume that one of the players is unrealistically optimistic about the quality
of the environment. Such optimism is commonly observed in various environmen-
tal problems, as discussed by Dechezleprêtre et al. (2022) and references therein.
Formally, we assume that player 2 incorrectly believes that the true parameter is
A > a.

This example satisfies the sufficient condition for convergence presented in
Section 2.3.7 So regardless of the initial prior, the players’ actions and beliefs
almost surely converge to the steady state, which is characterized by (1)-(4). We
will consider how player 2’s bias influences this steady-state outcome.

Let Qz denote the derivative of Q with respect to a variable z. Since Qa > 0
and Qθ < 0, Condition (5) implies that player 2’s steady-state belief is θ2 > θ ∗,
i.e., the optimistic player overestimates the state in the long run. Intuitively, player
2 is disappointed by observed environmental quality being worse than the antic-

6More generally, this is a model of production with negative externalities.
7Indeed, since Q is linear in θ and ε follows the normal distribution, the function K2(θ ,x)

defined in Section 2.3 is convex. Hence, K2(θ ,σ) is also convex and has a unique minimizer.

9



ipation, and becomes pessimistic about the state θ as time goes. This in turn
implies that player 2 overestimates the marginal social cost Qxi of the produc-
tion.8 Thus, her steady-state action x2 is lower than in the correctly-specified case.
On the other hand, the unbiased player 1’s production is exactly the same as in
the correctly-specified case, because player 1’s optimal production is indepen-
dent of the opponent’s action. Accordingly, player 2’s payoff is lower than in the
correctly-specified case, while player 1’s payoff is higher than that. So player 2’s
bias is detrimental for herself, but improves the opponent’s payoff. Also, in this
steady state, player 2’s bias improves the social surplus as well.

2.3 Convergence under First-Order Misspecification

Now we will show that players’ beliefs indeed converge to a steady state under a
mild condition called identifiability.

Given an action profile x and a state θ , define the Kullback-Leibuler divergence
for player 2 as

K2(θ ,x) = E
[

log
q(y|x,A,θ)
q(y|x,a,θ ∗)

∣∣∣∣x,a,θ ∗
]
=
∫

q(y|x,a,θ ∗) log
q(y|x,A,θ)
q(y|x,a,θ ∗)

dy,

where q(y|x,a,θ) is a probability density function of the signal y given (x,a,θ).
Intuitively, this KL divergence measures the difference between player 2’s sub-
jective signal distribution q(·|x,A2,θ) and the true distribution q(·|x,a,θ ∗). For
example, when the noise term ε follows the standard normal distribution N(0,1),
the above formula reduces to

K2(θ ,x) =
(Q(x,θ ,A)−Q(x,θ ∗,a))2

2
,

which is increasing in the difference between the true mean and subjective mean.
Then for each probability measure σ ∈ △X and state θ , define the weighted

Kullback-Leibuler divergence as

K2(θ ,σ) =
∫

X
K2(θ ,x)σ(dx).

8Attari et al. (2010) report that people overestimate certain energy-saving activities (e.g., driv-
ing less to save gasoline), but their answers also have substantial variation.
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Roughly, this K2(θ ,σ) measures the average difference between the subjective
signal distribution and the true distribution in the past, given the past action fre-
quency σ .

The identifiability condition requires that for each action frequency σ ∈ △X ,
the Kullback-Leibuler divergence K2(θ ,σ) has a unique minimizer θ2(σ) and it is
an interior point.9 This KL minimizer θ2(σ) can be thought of as a state θ which
best fits the true distribution (in the sense that the KL divergence is minimized).
For the degenerate distribution σ = 1x, the KL minimizer θ2(σ) is simply the state
which solves Condition (4).

Esponda, Pouzo, and Yamamoto (2021) show that for a single-agent prob-
lem, the identifiability condition above is sufficient for convergence of the agent’s
belief, i.e., regardless of the initial prior with full support, the agent’s belief con-
verges to a steady state almost surely. The following proposition shows that the
same result holds for our model of first-order misspecification. Intuitively, in our
model, player 1 is unbiased and learns the true state almost surely regardless of
players’ play; so there is only one player (player 2) whose belief evolves in a non-
trivial way, and it is natural to expect that the result for a single-agent problem
extends.

Proposition 1. Suppose that the identifiability condition holds, and that for each
state θ , there is a unique pure-strategy Nash equilibrium.10 Then almost surely,
player 2’s belief converges to the steady state belief, i.e., limt→∞ µ t

2 = 1θ2 where
θ2 is a steady state belief.

9Here we do not need to think about player 1’s Kullback-Leibuler divergence, because she is
unbiased and hence its unique minimizer is θ ∗ regardless of the action frequency.

10Player 2’s belief converges even when there are multiple Nash equilibria for some parameter
θ . In such a case, however, the limiting belief may be a mixed-action steady state (Berk-Nash
equilibrium).
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3 Higher-Order Misspecification

The benchmark model in the previous section assumed that players correctly un-
derstand the opponent’s view about the world. Now we consider the case in which
players may have higher-order misspecification, in that they may have a biased
view about the opponent’s view about the world (second-order misspecification),
a biased view about the opponent’s second-order misspecification, and so on.11

In what follows, we will focus on a special form of higher-order misspecifi-
cation: We will assume that each player has a biased view about the world, and
on top of that, she naively thinks that the opponent shares the same view about
the world (in reality, the opponent has her own view about the world). We call
it double misspecification, because players have a biased view about the world
(first-order misspecification) and a biased view about the opponent’s view about
the world (second-order misspecification). Of course, we can think of various
other forms of higher-order misspecification. In Appendix A, we will present a
more general model of higher-order misspecification.12

3.1 Setup: Double Misspecification

Our model is the same as the one studied in Section 2.1, except the information
structure; now we will assume that each player i (incorrectly) believes that it is
common knowledge that the signal y is given by y = Q(x1,x2,Ai,θ)+ε . We allow
A1 , A2, so the different players may have different levels of misspecification.

A critical difference from the first-order misspecification is that players have
inferential naivety and make incorrect predictions about the opponent’s play.13

Indeed, while player i believes that the opponent (player j) maximizes the payoff

11As evidence from laboratory experiments, subjects often systematically mispredict other sub-
jects’ preferences and actions (e.g., Van Boven, Dunning, and Loewenstein, 2000). Ludwig and
Nafziger (2011) report that most subjects in their experiments are not aware of or underestimate
overconfidence of other subjects.

12In static games with strategic complementarity/substitutability, recent work by McGee (2023)
analyzes how certain higher-order misspecification affects equilibrium outcomes.

13See Eyster (2019) for a review of the literature.
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conditional on the parameter Ai, the opponent maximizes the payoff conditional
on the parameter A j in reality. Accordingly, player i’s prediction about the oppo-
nent’s action does not match the opponent’s actual action in general.

To analyze players’ behavior in the presence of such inferential naivety, it is
useful to consider two hypothetical players i= 1,2. Hypothetical player i is player
j who thinks that it is common knowledge that the true technology is A j. Intu-
itively, player j thinks that hypothetical player i is her opponent, and hence each
period, player j chooses a Nash equilibrium action against hypothetical player i.

Let x̂i and µ̂i denote hypothetical player i’s action and belief, and let x =

(x1,x2, x̂1, x̂2) denote an action profile in the four-player game. Player i’s expected
stage-game payoff is defined as

Ui(x,θ ,Ai) = E[ui(xi,Q(xi, x̂−i,Ai,θ)+ ε)],

because she thinks that the parameter is Ai and the opponent is a hypothetical
player. Similarly, hypothetical player i’s expected stage-game payoff given θ is

Ûi(x,θ ,A−i) = E[ui(x̂i,Q(x̂i,x−i,A−i,θ)+ ε)].

Using these notations, the equilibrium strategy in the infinite-horizon game is de-
scribed as follows. In period one, all players have the same belief µ1

i = µ̂1
i = µ .

So they play a Nash equilibrium (x1
1,x

1
2, x̂

1
1, x̂

1
2), which (assuming interior solu-

tions) satisfies the first-order conditions ∂E[Ui(x,θ)|µ]
∂xi

= 0 and ∂E[Ûi(x,θ)|µ]
∂ x̂i

= 0. At
the end of period one, players observe a public signal y1 = Q(x1

1,x
1
2,a,θ

∗)+ ε ,
and update the posterior beliefs using Bayes’ rule. Their beliefs in period two are
given by

µ2
i (θ) =

µ1
i (θ) f (y−Q(x1

i , x̂
1
−i,Ai,θ))∫

Θ µ1
i (θ̃) f (y−Q(x1

i , x̂
1
−i,Ai, θ̃))dθ̃

,

µ̂2
i (θ) =

µ̂1
i (θ) f (y−Q(x̂1

i ,x
1
−i,A−i,θ))∫

Θ µ̂1
i (θ̃) f (y−Q(x̂1

i ,x
1
−i,A−i, θ̃))dθ̃

.

As is clear from this formula, player i’s posterior belief is biased in two ways:
She updates the belief conditional on the wrong parameter Ai, and on the wrong

13



prediction x̂1
−i about the opponent’s play. Then in period two, players play a Nash

equilibrium given this belief profile µ2 = (µ2
1 ,µ

2
2 , µ̂

2
1 , µ̂

2
2 ).

14 Likewise, in any sub-
sequent period t, players play a Nash equilibrium given the posterior beliefs com-
puted by Bayes’ rule.

Given an action profile x = (x1,x2, x̂1, x̂2), let θi(x,Ai) denote player i’s long-
run belief when the same action x is chosen every period. That is, let θi(x,Ai) be
a state θ which solves

min
θ∈Θ

|Q(xi, x̂ j,Ai,θ)−Q(x1,x2,a,θ ∗)|,

so that player i’s subjective model best explains the actual output. Note that
when we evaluate the subjective mean, we take into account the fact that player
i believes that the opponent’s action is x̂ j (rather than x j). We will assume that
θ2(x,A) is unique for each x and Ai. As in the case of first-order misspecification,
in many examples, the consistency condition above reduces to Q(xi, x̂ j,Ai,θi) =

Q(x1,x2,a,θ ∗).
With this notation, a steady state under double misspecification is defined as

(x∗1,x
∗
2, x̂

∗
1, x̂

∗
2,µ

∗
1 ,µ

∗
2 , µ̂

∗
1 , µ̂

∗
2 ) which satisfies

x∗i ∈ argmax
xi

Ui(xi, x̂∗−i,Ai,θi) ∀i, (7)

x̂∗i ∈ argmax
x̂i

Ûi(x̂i,x∗−i,A−i,θ−i) ∀i, (8)

µ∗
1 = µ̂∗

2 = 1θ1(x∗,A1), (9)

µ∗
2 = µ̂∗

1 = 1θ2(x∗,A2). (10)

The first two conditions are the incentive-compatibility conditions, which require
that each player maximize her own payoff given some beliefs. The next two con-
ditions require that these beliefs satisfy consistency, in that each (actual and hypo-
thetical) player’s belief is concentrated on a state with which her subjective signal
distribution coincides with the objective distribution.

14Since y is public, player 1 correctly predicts hypothetical player 2’s posterior belief µ̂2
2 , and

similarly, hypothetical player 2 correctly predicts player 1’s posterior belief µ2
1 . So they will

indeed play a Nash equilibrium given these beliefs.

14



Recall that in the case of first-order misspecification, players’ actions and be-
liefs converge to a steady state if the identifiability condition holds. It turns out
that under double misspecification, such a result does not hold, and the identifi-
ability condition need not ensure convergence to a steady state. As we show in
the next subsection, one of such examples is the environmental problem studied
in Section 2.2.

3.2 Environmental Problem under Double Misspecification

Consider the environmental problem in section 2.2, but assume now that players
are not aware of the fact that the opponent has a different view about the world.
Specifically, consider double misspecification with parameters A1 = a and A2 ≥ a.
In this setup, player 1 is unaware of player 2’s optimism and naively thinks that
player 2 also knows a. To simplify the exposition, assume that the initial prior is
a uniform distribution on Θ = [0.7,0.9].

The steady state in this setup is characterized by the conditions (7)-(10). For
the special case in which A1 = A2 = a (i.e., the case with no misspecification),
there are three steady states: One of the steady state is an interior point, in which
both players learn the true state (θ1 = θ2 = θ ∗), and choose the Nash equilibrium
at this state θ ∗. The remaining two steady states are boundary points. In these
steady states, players’ beliefs are (θ1,θ2) = (θ ,θ) or (θ1,θ2) = (θ ,θ), and they
choose a Nash equilibrium given these beliefs.15 However, these boundary steady
states do not arise as a long-run outcome; since there is no misspecification, start-
ing from a common prior µ , players learn the true state with probability one, i.e.,
the beliefs converge to the interior steady state almost surely when A1 = A2 = a.

Now, consider the case in which player 2 is slightly optimistic (i.e., A2 is a bit

15To see that (θ1,θ2) = (θ ,θ) is a steady state belief, note that ∂ 2Q
∂xi∂θ < 0, so we have x1 > x̂1

in this steady state. This means that player 2 underestimates the opponent’s production, and thus
finds that the quality of the environment is worse than the anticipation. This makes player 2 more
pessimistic, but her current belief θ already hits the upper bound of the set Θ, so her belief stays
there. Similarly, player 1’s belief stays at θ , which imply that (θ1,θ2) = (θ ,θ) is indeed a steady
state belief. For the same reason, (θ1,θ2) = (θ ,θ) is a steady state belief.

15



larger than a). By the continuity, there is an interior steady state in which players’
beliefs are close to (θ ∗,θ ∗). Let m∗ = (m∗

1,m
∗
2) denote this steady state belief.

Also, the boundary points (θ1,θ2) = (θ ,θ) and (θ1,θ2) = (θ ,θ) are still steady
states in this case.

One may expect that the beliefs converge to the interior steady state m∗, just
as in the case of no misspecification. Proposition 2 shows that such a conjecture
is incorrect, and the beliefs converge to the boundary points when A2 > a.

Proposition 2. (i) Suppose that A2 = a. Then almost surely, players eventually
learn the true state θ ∗, i.e.,

Pr
(

lim
t→∞

(µ t
1,µ

t
2) = (1θ∗ ,1θ∗)

)
= 1.

(ii) There is A2 > a such that for any A2 ∈ (a,A2), players’ posterior beliefs
µ t = (µ t

1,µ
t
2) converges to the interior steady state 1m∗ with zero probability. In-

deed, almost surely, the beliefs will be concentrated on boundary points, i.e.,

Pr
(

lim
t→∞

µ t ∈ {(1θ ,1θ ),(1θ ,1θ )}
)
= 1.

Proposition 2 shows that unawareness about the opponent’s bias can have a
huge impact on the equilibrium outcome. Recall that in the case of first-order
misspecification, the beliefs converge to the steady state regardless of the param-
eter A2. Since the steady state outcome is continuous in A2, this means that small
optimism of player 2 has only a marginal impact on the long-run outcome, and
players approximately learn the true state. In contrast, once players are unaware
of the opponent having a different view about the world, the long-run outcome be-
comes discontinuous at A2 = a, and even vanishingly small optimism completely
changes the learning outcome.

In the literature of incomplete-information games, it is well-known that an
equilibrium in a normal-form game is continuous with respect to the information
structure; Chen, Di Tillio, Faingold, and Xiong (2017) show that a small pertur-
bation of one’s belief hierarchy (a belief about an economic state, a belief about
the opponent’s belief about the state, and so on) has only a marginal impact on

16



the equilibrium. Our Proposition 2 above does not contradict with this result. In-
deed, in our model, the equilibrium strategy in the infinite-horizon game, which
maps one’s belief µi to an action, is continuous in the parameter A2, so a small
perturbation of one’s belief hierarchy has a negligible impact on the equilibrium
strategy.16 In this sense, the main result of Chen, Di Tillio, Faingold, and Xiong
(2017) still holds in our model. However, this need not imply that the resulting
equilibrium outcome is continuous in the parameter A2, and Proposition 2 shows
that our model is one of the cases in which such discontinuity arises.

3.3 Proof Sketch of Proposition 2

Now we will describe an outline of the proof of Proposition 2 (ii). Given an
action profile x = (x1,x2, x̂1, x̂2), player i believes that the signal y is generated by
the formula

y = Ai −θ(xi + x̂−i)+ ε

which can be rewritten as

θ − ε
xi + x̂−i

=
Ai − y

xi + x̂−i
.

Hence, if she observes a signal y, then the likelihood of the state θ ∈ Θ is the
truncated normal distribution on the set Θ, induced by a normal distribution with
mean Ai−y

xi+x̂−i
and variance

( 1
xi+x̂−i

)2.17 For shorthand notation, let Ii(x) denote the
inverse of this variance, i.e.,

Ii(x) = (xi + x̂−i)
2.

16In our model, the belief hierarchies induced by A2 and A′
2 , A2 are close in the uniform-weak

topology of Chen, Di Tillio, Faingold, and Xiong (2017) if A2 and A′
2 are close.

17The truncated normal distribution is derived from a normally distributed random variable
by bounding the random variable from either below or above (or both). For example, when a
random variable X follows N(µ, 1

ξ ), the truncated normal distribution on Θ = [θ ,θ ] is obtained by
conditioning X on θ ≤ X ≤ θ .
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Intuitively, this Ii(x) measures the informativeness of the signal y for player i given
an action profile x; high Ii implies low variance, meaning that the signal is more
informative.

Since the initial prior is uniform and the likelihood induced by signals are trun-
cated normal distributions, each player’s posterior belief is also a truncated normal
distribution. Let Ñ(m,σ2) denote the truncated normal distribution induced by the
normal distribution N(m,σ2). Then player i’s posterior at the beginning of period
t + 1 is the truncated normal distribution Ñ(mt+1

i , 1
tξ t+1

i
), where the parameters

mt+1
i and ξ t+1

i are given by

mt+1
i =

∑t
τ=1 Ii(xτ

i , x̂
τ
−i)
(

Ai−yτ

xτ
i +x̂τ

−i

)
∑t

τ=1 Ii(xτ
i , x̂

τ
−i)

, (11)

ξ t+1
i =

1
t

t

∑
τ=1

Ii(xτ
i , x̂

τ
−i). (12)

In words, the parameter mt+1
i is the weighted average of player i’s estimate Ai−yτ

xτ
i +x̂τ

−i

each period, where the weight is the informativeness Ii. The parameter ξ t+1
i is

simply the average of the informativeness Ii of the past signals. Our goal is to
show that this posterior belief Ñ(mt+1

i , 1
tξ t+1

i
) does not converge to the interior

steady state.

Step 1: Difference Equation We first show that the motion of the parameters
(mt

i,ξ t
i ) can be described by a system of difference equations. Given an action

profile x, let θi(x) be a solution to Q(xi, x̂−i,Ai,θ) = Q(x1,x2,a,θ ∗), i.e.,

θi(x) =
Ai −a+θ ∗(x1 + x2)

xi + x̂−i
.

Intuitively, this θi(x) can be thought of as player i’s estimate of θ when the noise
is zero (i.e., ε = 0).18 This suggests that player i’s actual estimate Ai−y

xi+x̂−i
appearing

18For some x, θi(x) defined above may not be in the state space Θ. So θi(x) should be regarded
as a parameter which best explains the data, when the choice of θ is not restricted on the state
space Θ. In contrast, θi(x,Ai) defined in the previous subsection must be chosen from the state
space Θ.
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in (11) can be represented as θi(x) plus a noise, and we indeed have19

Ai − y
xi + x̂−i

= θi(x)−
ε√

Ii(xi, x̂−i)
.

Plugging the above equation into (11) and arranging it and (12), we obtain the
following recursive equations which completely describe the evolution of (mt ,ξ t).

mt+1
i −mt

i =
1
t


Ii(xt

i, x̂
t
−i)

(
θi(xt)−mt

i −
εt√

Ii(xt
i ,x̂

t
−i)

)
t−1

t ξ t
i +

1
t Ii(xt

i, x̂
t
−i)

 , (13)

ξ t+1
i −ξ t

i =
1
t

(
Ii(xt

i, x̂
t
−i)−ξ t

i
)
. (14)

In words, (13) implies that player i updates the mean belief mt
i depending on how

her estimate θi(xt)− ετ√
Ii(xt

i ,x̂
t
−i)

based on the new information today differs from

her current mean belief mt
i. If the new estimate coincides with the current mean

belief, she does not update it. Otherwise, the mean belief moves toward the new
estimate θi(xt)− ετ√

Ii(xt
i ,x̂

t
−i)

, and its magnitude is influenced by the informativeness

of the signals; if Ii(xt
i, x̂

t
−i) is relatively larger than t−1

t ξ t
i +

1
t Ii(xt

i, x̂
t
−i), it means

that the signal today is more informative relative to the past signals, and hence
influences the posterior more.

The second equation (14) has a similar interpretation, and ξ t
i is updated de-

pending on how the informativeness Ii(xt
i, x̂

t
−i) of the signal today differs from the

informativeness ξ t
i of the past signals.

Note that players’ actions (xt
i, x̂

t
−i) in period t is a one-shot Nash equilibrium

given the posterior belief Ñ(mt
i,

1
(t−1)ξ t

i
), so all terms in the right-hand sides of the

above equations are the functions of (mt
i,ξ t

i ), except the noise term ε t . Hence the
above difference equations are indeed recursive, i.e., once we fix the current value
(mt

i,ξ t
i ) and the noise term ε t , the next value (mt+1

i ,ξ t+1
i ) is uniquely determined.

Step 2: Stochastic Approximation Since the difference equations derived in
Step 1 involves a stochastic noise term ε , finding its exact solution is a hard prob-

19This equation follows from the definition of θi(x) and y = a−θ ∗(x1 + x2)+ ε .
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lem. So instead, we borrow the idea of stochastic approximation and use the fact
that the solution to the difference equations can be approximated by much simpler
differential equations.

Recall that player i’s posterior belief in period t is the truncated normal distri-
bution Ñ(mt

i,
1

(t−1)ξ t
i
), where mt

i is the mean and 1
(t−1)ξ t

i
is the variance of the (un-

truncated) normal distribution. When t is sufficiently large, this variance 1
(t−1)ξ t

i

approaches zero, and hence the belief Ñ(mt
i,

1
(t−1)ξ t

i
) is approximately a degenerate

belief. Given mi, let Ñ(m,0) denote this limiting belief, that is,

Ñ(m,0) = lim
σ2→0

Ñ(m,σ2) =


1m if m ∈ [θ ,θ ]
1θ if m < θ
1θ if m > θ

where θ = 0.7 and θ = 0.9 denote the boundary points of the state space Θ =

[0.7,0.9].
Then players’ actions (xt

i, x̂
t
−i) in period t can be approximated by the one-shot

Nash equilibrium given this limiting belief Ñ(mt
i,0). Let θi(mt

1,m
t
2) and Ii(mt

i) de-
note player i’s estimate and the signal informativeness when players play this Nash
equilibrium. That is, θi(m1,m2) = θi(x) and Ii(mi) = Ii(xi, x̂−i), where (x̂ j, x̂− j) is
the Nash equilibrium for the belief Ñ(m j,0) for each j.

This in turn implies that the drift terms of the difference equations (13) and
(14) are approximated by much simpler terms Ii(mt

i)(θi(mt)−mt
i)

ξ t
i

and Ii(mt
i)− ξ t

i , in
the sense that there is K > 0 such that for any t and for α = 0.5,∣∣∣∣∣ Ii(xt

i, x̂
t
−i)(θi(xt)−mt

i)
t−1

t ξ t
i +

1
t Ii(xt

i, x̂
t
−i)

−
Ii(mt

i)(θi(mt)−mt
i)

ξ t
i

∣∣∣∣∣< K
tα , (15)

∣∣(Ii(xt
i, x̂

t
−i)−ξ t

i
)
− (Ii(mt

i)−ξ t
i )
∣∣< K

tα . (16)

Then it follows from the theory of stochastic approximation (e.g., Theorem 2.1 of
Kushner and Yin (2003)) that the asymptotic behavior of the process (13) and (14)

20



is approximated by the ordinal differential equations (ODE)

dmi(t)
dt

=
Ii(mi(t))(θi(m(t))−mi(t))

ξi(t)
, (17)

dξi(t)
dt

= Ii(mi(t))−ξi(t), (18)

which do not involve a noise term.

Step 3: Instability of the Interior Steady State Figure 1 is the phase portrait
which describes the solution to the ODE (17), when there is no misspecification
(i.e., A2 = a) and the variable ξ (t) is fixed at ξ1(t) = ξ2(t) = 1 for all t.20 The ori-
gin is the point in which both players learn the true state (i.e., (m1,m2) = (θ ∗,θ ∗)

where θ ∗ = 0.8), which is the interior steady state in this special case. There are
only two paths converging to this steady state m∗, one from the top-right and the
one from bottom-left. These paths are the basin of attraction of the steady state.
If the initial value is not on this basin of attraction, the solution to the ODE does
not converge to m∗, and it moves toward the boundary points. (This is so even if
the initial value is in a neighborhood of the origin.) In this sense, the origin is an
unstable steady state.

Figure 2 is the phase portrait when player 2 is optimistic (precisely, when
A2 −a = 0.03). Due to the misspecification, the origin is not a steady state; now
the steady state m∗ moves toward the top-right corner. Other than that, the motion
of the mean belief m(t) is very similar to that for the case with no misspecification.
In particular, the steady state m∗ is still unstable, in that there are only two paths
converging to this point.

The instability of the steady state m∗ here is deeply related to the inferential
naivety. To see this, note first that in the steady state m∗, each player’s subjective
output exactly matches the objective output. Suppose now that the mean belief is

20In reality, the parameter ξi is not fixed, and evolves according to (18). However, this does not
influence the motion of the mean belief m(t) much, because the variable ξ does not influence the
sign of dmi(t)

dt in the ODE (17), i.e., it does not influence whether the mean belief mi(t) increases or
decreases at the next instant. Accordingly, the motion of m(t) is very similar to the one described
in Figure 1 even for the case in which ξ (t) changes over time.
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Figure 1: Motion of m(t) when A2 = a
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Figure 2: Motion of m(t) when A2 > a

perturbed toward the bottom-right direction, and we have m(t) = (m1(t),m2(t)) =
(m∗

1+η ,m∗
2−η) for small η > 0. That is, we consider the case in which player 1

is more pessimistic about the state θ than in the steady state, while player 2 is more
optimistic about the state. With this belief profile, player 1 reduces the production
than in the steady state, while player 2 increases the production. However, due to
the inferential naivety, player 1 misestimates the opponent’s production; player 1
incorrectly believes that the opponent is similarly pessimistic and reduces the pro-
duction (in reality, the opponent increases the production). This means that player
1 observes the environmental quality worse than her anticipation, and becomes
even more pessimistic about the state θ . Similarly, player 2 becomes even more
optimistic. Hence the gap between players’ beliefs become larger, and the belief
profile m(t) moves toward the bottom-right corner, rather than moving back to the
origin. This process continues over and over; so even if the initial gap η is small,
it becomes arbitrarily large, and the belief converges to the boundary point.

Remark 1. For the argument in the last paragraph of this step to work, it is critical
that the state θ and one’s belief about θ have conflicting effects on the outcome y,
in the sense that Qθ (which measures the effect of θ ) and Qxi

∂xi
∂mi

(which measures
the effect of player i’s belief about θ through her action) have opposite signs. To
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see this, suppose that the current mean belief is m(t) = (m1(t),m2(t)) = (m∗
1 +

η ,m∗
2−η) as in the discussion above, and suppose now that Qθ > 0 and Qxi

∂xi
∂mi

>

0.21 The latter inequality implies that player 1’s inferential naivety leads her to
overestimate the output, i.e., she finds that the actual output is worse than her
anticipation. Then because we have Qθ > 0, player 1’s mean belief m1 goes down
and approaches to the steady state belief m∗

1. In Section 3.4, we will consider a
general setup, and show that this property is indeed necessary for the instability.
See Proposition 4.

Step 4: Non-Convergence to Unstable Steady State In the previous step, we
have seen that the motion of the solution to the ODE is very sensitive to the ini-
tial value: If the initial value is on the basin of attraction of the interior steady
state, the solution eventually converges to there. However, once the initial value
is perturbed, the solution moves toward a different direction and converges to the
boundary points. It turns out that this property is the key to obtain our discontinu-
ity result.

To begin with, consider the case with A2 > a, and suppose that the current
mean belief mt is at the steady state (or in its neighborhood). The key observation
is that due to the stochastic shock ε , the mean belief mt cannot stay at the basin of
attraction of the steady state forever. Indeed, as can be seen from (13), the shock
ε pushes mt toward the direction

b =

( √
I1

(t −1)ξ1 + I1
,

√
I2

(t −1)ξ2 + I2

)
,

which is simplified to b = ( 1
t
√

I1
, 1

t
√

I2
) in the steady state.22 This vector b is repre-

sented by the black thick line in Figure 2, and it does not coincide with the basin
of attraction of the steady state. Hence at some point, the mean belief mt will be
“kicked out” from the basin due to the shock, and then the mean belief should
move toward the boundary points, rather than reverting to the steady state.23

21Note that Qθ < 0 and Qxi
∂xi
∂mi

> 0 in the above example.
22Here we use the fact that ξi = Ii at the steady state.
23More precisely, in the proof of the non-convergence theorem, we show that the mean belief

23



In contrast, when there is no misspecification (i.e., A2 = a), the mean belief mt

remains on the basin of attraction, even after the shock ε . Indeed, if the current
mean belief is at the steady state, the shock pushes the mean belief toward the
direction

b =

(
1

t
√

I1
,

1
t
√

I2

)
,

which is proportional to (1,1) in this special case. This means that the mean belief
mt remains on the 45-degree line, even after the shock. As can be seen from Figure
1, this 45-degree line is precisely the basin of attraction, and hence the solution to
the ODE starting from the current mean belief reverts to the steady state. This sug-
gests that the beliefs converge to the interior steady state in this case. Intuitively,
in the case of no misspecification, player 1’s posterior belief about θ coincides
with player 2’s belief after every history, and hence the amplifying effect is never
triggered; accordingly the mean belief does not move toward the boundary points.

In the proof of Proposition 2, we formalize the idea above by borrowing a
technique developed by Pemantle (1990), who establish a non-convergence theo-
rem for a class of stochastic processes. Pemantle’s theorem does not apply to our
model directly, as our stochastic process does not satisfy some technical assump-
tions of Pemantle. So we show that Pemantle’s result remains valid even in our
setup; see Appendix B for details.

Remark 2. Heidhues, Kőszegi, and Strack (2021) consider a single-agent learn-
ing problem and show that the agent’s belief does not converge to an unstable
steady state. Unfortunately, their proof has a flaw: In the proof, they show that
the mean belief visits the basin of attraction of stable steady states infinitely of-
ten, but this need not imply non-convergence to unstable equilibria. (As shown
in Theorem 6.10 of Benaı̈m (1999), we need to show that the mean belief visits a
compact subset of the basin of stable steady states infinitely often.) To fix it, one
can use our non-convergence theorem; the non-convergence theorem of Heidhues,

leaves c√
t -neighborhood of the basin of attraction infinitely often, due to the shock ε . Once the

mean belief leaves this neighborhood, the drift term (which represents the “amplifying effect” we
explained in the last step) is bounded away from zero and dominates the impact of the stochastic
shock ε , and hence the mean belief moves toward the boundary points as described in Figure 2.
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Kőszegi, and Strack (2021) is correct, and it directly follows from our Proposition
14 in Appendix B.

3.4 Non-Convergence in a General Setup

We have seen that in the environmental problem under double misspecification,
players’ beliefs do not converge to the interior steady state. Now we will consider
a general model and provide a condition under which discontinuity similar to that
in the environmental problem occurs.

Consider a general model of double misspecification with a compact state
space Θ = [θ ,θ ]. Consider an initial prior µ with a continuous density. Assume
that for any state θ , a Nash equilibrium (xi, x̂−i) given (Ai,θ) is unique. We also
assume that the noise term ε follows the standard normal distribution N(0,1).

Assume that the output function Q is linear in θ , in that Q= R(x,a)θ +S(x,a),
and define Ii(xi, x̂−i) = (R(xi, x̂−i,Ai))

2. This linearity assumption is a bit restric-
tive, but it ensures that the likelihood induced by any signal sequence (y1, · · · ,yt)

is the truncated normal distribution Ñ(mt
i,

1
(t−1)ξ t

i
), where the parameters mt

i and

ξ t
i are determined by (11) and (12) with the term Ai−yτ

xτ
i +x̂τ

−i
in (11) being replaced by

yτ−S(xτ
i ,x̂

τ
−i,Ai)

R(xi,x̂−i,Ai)
. We assume that R(xi, x̂−i,Ai) , 0 for all on-path actions (xi, x̂−i);

this implies that ξ t
i > 0, and hence the distribution Ñ(mt

i,
1

(t−1)ξ t
i
) is well-defined.

To keep our notation as simple as possible, in what follows, we strengthen this
assumption and focus on the case in which R(xi, x̂−i,Ai) < 0 for all on-path ac-
tions (xi, x̂−i).24 Then just as in the environmental problem, the evolution of the
parameters mt

i and ξ t
i is governed by the difference equations (13) and (14), where

θi(x) is a solution to Q(xi, x̂−i,Ai,θ) = Q(x1,x2,a,θ ∗).
Assume that the drift terms of these difference equations are approximated by

the drift terms of the ODE. That is, assume that there is K > 0 and α > 0 such that
(15) and (16) hold. Then it follows from the theory of stochastic approximation

24When R(xi, x̂−i,Ai) > 0 for some actions (xi, x̂−i), the term −ε t/
√

Ii(mt
i,

1
(t−1)ξ t

i
) in (13)

should be replaced with +ε t/
√

Ii(mt
i,

1
(t−1)ξ t

i
) for such actions, and it may influence the speci-

fication of the vector b. All the remaining arguments are not affected.

25



that the evolution of the parameters (mt ,ξ t) is asymptotically approximated by
the ODE (17) and (18). Here, the functions Ii(mt

i) and θi(mt) in these equations
are defined as in the environmental problem (i.e., these are the informativeness
Ii(xi, x̂−i) and the estimate θi(x) when players have degenerate beliefs and play a
Nash equilibrium given these beliefs).

A steady state of the ODE is a point p=(m1,m2,ξ1,ξ2) where dmi(t)
dt = dξi(t)

dt =

0. A steady state p is linearly unstable if the Jacobian J of the ODE at the point
p has at least one eigenvalue with positive real part. When p is linearly unstable,
the basin of attraction of p is locally approximated by p+H, where H is the space
spanned by the eigenvectors associated with eigenvalues with negative real parts.
So if the initial value is not in this set p+H, the solution to the ODE eventually
leaves a neighborhood of p. The interior steady state of the environmental prob-
lem in Section 3.2 is an example of linearly unstable steady states; as described
in Figure 1, when A1 = A2 = a, the solution to the ODE leaves a neighborhood of
the origin unless the initial value is on the 45-degree line.

In our general model, the set H, which determines the basin of attraction of
the stead state, can be computed as follows: Note that θi(m)−mi = 0 and ξi = Ii

in any steady state. Hence the Jacobian J of the ODE at a steady state p can be
written as

J =


∂θ1
∂m1

−1 ∂θ1
∂m2

0 0
∂θ2
∂m1

∂θ2
∂m2

−1 0 0
∂ I1
∂m1

0 −1 0

0 ∂ I2
∂m2

0 −1

 .

Obviously this Jacobian J has an eigenvalue λ = −1 (multiplicity 2), and the
corresponding eigenspace is

{(0,0,ξ1,ξ2)|∀ ξ1,ξ2 ∈ R}. (19)

The remaining two eigenvalues of J are the ones for the submatrix

J′ =

(
∂θ1
∂m1

−1 ∂θ1
∂m2

∂θ2
∂m1

∂θ2
∂m2

−1

)
.
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So a steady state p is linearly unstable if and only if this submatrix J′ has an
eigenvalue with positive real part.

If the two eigenvalues of J′ have positive real part, then the set H is simply
the set described by (19). So the solution to the ODE leaves a neighborhood of
p, unless the mean belief (m1,m2) of the initial value exactly matches that of the
steady state belief. If the matrix J′ has one eigenvalue with positive real part and
one eigenvalue with negative real part, then the set H is

(ch1,ch2,ξ1,ξ2)|∀c,ξ1,ξ2 ∈ R}

where h = (h1,h2) is an eigenvector associated with the eigenvalue with negative
real part. In this case, if the initial value of the mean belief (m1,m2) is perturbed
toward a direction other than h, then it leaves the basin p+H, so that the solution
to the ODE must leave a neighborhood of p.

The following proposition shows that the process does not converge to a lin-
early unstable steady state, if the noise kicks out the mean belief from its basin
of attraction in the above sense. This result is a direct consequence of the general
non-convergence theorem in Appendix B (Proposition 14), and hence we omit the
proof. Let b denote the coefficient vector on the noise term ε in the difference
equations (13) and (14) at the steady state p, i.e.,

b =

( √
I1

tξ1 + I1
,

√
I2

tξ2 + I2
,0,0

)
=

1
t +1

(
1√
I1
,

1√
I2
,0,0

)
.

Proposition 3. Pick the parameters (A1,A2) arbitrarily, and pick an initial prior
µ with a continuous density. Let p be a linearly unstable steady state of the ODE
(17) and (18). Assume that the following properties hold.

(i) For each i and θ , a Nash equilibrium (xi, x̂−i) given (Ai,θ) is unique.

(ii) The noise term ε follows the standard normal distribution N(0,1),

(iii) Q = R(x,a)θ +S(x,a) and R < 0 for all on-path actions.

(iv) Given any on-path action profile x, there is a unique θ ∈ R which solves
Q(xi, x̂−i,Ai,θ) = Q(x1,x2,a,θ ∗). (Hence θi(x) is well-defined.)
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(v) The functions Ii(mi) and θi(m) are Lipschitz-continuous.

(vi) There is K > 0 such that (15) and (16) hold for α = 1 at the steady state p.

(vii) b < H.

Then the probability of limt→∞(mt ,ξ t) = p is zero.

The critical assumption in Proposition 3 is (vii), which implies that the process
(mt ,ξ t) cannot stay in the basin of attraction of p due to the stochastic shock ε .
Proposition 3 asserts that if this assumption (as well as other standard assumptions
(i)-(vi)) holds, then the process converges to the unstable steady state p with zero
probability.

We view assumption (vii) as a mild restriction, because it is satisfied for
generic choice of parameters. For example, in the environmental problem studied
in the previous subsections, the assumption (vii) is satisfied for any value A2 , a in
a neighborhood of a. In this sense, linear instability of p “almost always” implies
non-convergence to p.

So it is important to understand when an interior steady state p is linearly
unstable, and the next proposition characterizes it. We use the following notation.
For each i and θ−i, let f ∗i (θ−i) denote the set of all θi such that θi = θi(x,Ai)

for some (x1,x2, x̂1, x̂2) such that (xi, x̂−i) is a Nash equilibrium given (Ai,θi) for
each i. Intuitively, this f ∗i (θ−i) is the set of steady states in player i’s single-agent
learning problem, where the opponent −i’s belief is fixed at θ−i (and hence she
chooses the same Nash equilibrium action for θ−i every period), while player i
incorrectly believes that the opponent −i’s belief changes over time.

Figure 3 describes the graph of f ∗i for the environmental problem. The blue
line is the graph of f ∗1 (θ2). It shows that when θ2 is fixed at a low value, we
have f ∗1 (θ2) = {θ 1}, i.e., the highest state θ 1 is the unique steady state for player
1’s learning problem. Indeed, as can be seen from Figure 3, if θ2 is low, the
arrow points toward the east, so θ1 goes up. Similarly, when θ2 is fixed at a
high value, we have f ∗1 (θ2) = {θ 1}. When θ2 takes an intermediate value, both
boundary points θ 1 and θ 1 are still steady states, and on top of that, there is an
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interior steady state which is described by the upward-sloping blue curve in the
figure. Note that at any point on this blue curve, the solution of the ODE moves
toward the vertical direction only; i.e., player 1’s belief m1 does not change at
the next instant. This means that these are indeed steady states for player 1’s
learning problem. The orange line in the figure is the graph of f ∗2 (θ1), and it
can be interpreted in the same way. Note that a steady state of the joint learning
problem is the intersections of the blue and orange lines.
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Figure 3: Example of ∂θi(m)
∂mi

−1 > 0
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Figure 4: Example of ∂θi(m)
∂mi

−1 < 0

Proposition 4. Let p=(m∗
1,m

∗
2,ξ

∗
1 ,ξ

∗
2 ) be a steady state such that Q(xi, x̂−i,Ai,m∗

i )=

Q(x1,x2,a,θ ∗) where (x1,x2, x̂1, x̂2) denotes steady-state actions. Suppose also
that for each i, there is an open interval Ui containing m∗

−i such that there is a
unique continuous function fi : Ui → R with fi(m∗

−i) = m∗
i and fi(θ−i) ∈ f ∗i (θ−i)

for all θ−i ∈ Ui. Assume that fi is differentiable. Then the following properties
hold:

(i) Suppose that ∂θi(m)
∂mi

−1 > 0 at p for each i. Then p is linearly unstable.

(ii) Suppose that ∂θi(m)
∂mi

− 1 < 0 at p for each i. Then p is linearly unstable if
f ′1(θ2) f ′2(θ1)> 1 at p.
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The function fi defined in Proposition 4 maps the opponent’s belief θ−i to
player i’s interior steady-state belief. For example, in Figure 3, f1 is the blue
flatter upward-sloping curve, and f2 is the orange steeper upward-sloping curve.

Proposition 4 (i) assumes ∂θi(m)
∂mi

−1> 0. To interpret this assumption, consider
player i’s single-agent learning problem in which the opponent’s belief is fixed at
m∗
−i. In this problem, player i’s posterior belief is represented by the parameters

(mt
i,ξ t

i ) just as in the original problem, and the motion of (mt
i,ξ t

i ) is approximated
by the ODE (17) and (18). The Jacobian of this system of the ODE at the steady
state belief is

Ji =

(
∂θi
∂mi

−1 0
∂ Ii
∂mi

−1

)
,

so its eigenvalues are λ = −1, ∂θi
∂mi

− 1. The assumption ∂θi(m)
∂mi

− 1 > 0 ensures
that the latter eigenvalue is positive, which means that the steady state is linearly
unstable in this single-agent problem. Proposition 4 (i) shows that in such a case,
the steady state is similarly unstable even when players jointly learn the state.

Proposition 4 (ii) assumes ∂θi(m)
∂mi

− 1 < 0, in which case the Jacobian Ji has

two negative eigenvalues, λ = −1, ∂θi
∂mi

− 1. This means that in the single-agent
learning problem, the steady state p is asymptotically stable; i.e., if the opponent’s
belief is fixed at the steady state value, any solution to the ODE starting from a
neighborhood of p converges to p. Proposition 4 (ii) shows even in such a case,
the steady state p can be unstable when players jointly learn the state. Specifically,
if players’ beliefs have strong complementarity/substitutability in that f ′1 f ′2 > 1,
then the steady state is unstable. On the other hand, if f ′1 f ′2 < 1, then it is not
difficult to show that the steady state is asymptotically stable, in that all eigenval-
ues of the Jacobian have negative real part. In this case, if the initial value is in a
neighborhood of p, any solution to the ODE (17) and (18) converges to p.

The environmental problem studied in the previous subsections is one of the
examples which satisfies the assumption stated in Proposition 4 (i). Indeed, as
described in Figure 3, when m2(t) is fixed at the steady state value and m(t) moves
on the horizontal axis only, the solution leaves a neighborhood of p. Hence the
steady state p is unstable in the single-agent learning problem.
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We can also construct an example which satisfies the assumption stated in
Proposition 4 (ii), by replacing the parameters of the environmental problem with
Θ = [0.5,0.6] and θ ∗ = 0.55. Figure 4 describes the solution of the ODE for
this modified environmental problem with small optimism (specifically, A2 −a =

0.003). Now the interior steady state is asymptotically stable in the single-agent
learning problem; indeed, when m2(t) is fixed at the steady state value and m(t)
moves on the horizontal axis only, the solution converges to p. Nonetheless this
steady state is unstable in the joint learning problem, because the slope of the
curve fi is steep at the origin and f ′1 f ′2 > 1.

Proposition 4 is applicable to other economic applications as well. Here are
two examples:

1. Team production. Suppose that two players work on a joint project. Each
period, each player i chooses an effort level xi ∈ [0,1] and observes an output

y = a−θ
(

1
x1 + x2

− 1
2

)
+ ε, (20)

where a is the capability of the team, θ is an unknown state, and ε is a
noise term which follows the standard normal distribution. Assume that the
true state is θ ∗ = 0.5. Player i’s payoff is y− c(xi), where c(xi) =

1
8x2 is a

production cost. Consider the double misspecification model with A1 = a
and A2 > a, where player 2 is overconfident about the capability and player
1 is unaware of it. When A2 = a, simple algebra shows that f ′1 f ′2 ≈ 17.7
at the interior steady state θ ∗ = 0.5. By the continuity, this implies that
f ′1 f ′2 > 1 for any A2 close to a. So from Proposition 4, the interior steady
state is linearly unstable whenever player 2 has small overconfidence.

2. Cournot duopoly with linear demand. Suppose that each period, each firm
i = 1,2 chooses its quantity xi ∈ [0,x], and a publicly observable market
price is given by

y = a−θ (x1 + x2)+ ε,

where θ is an unknown state and ε is a noise term which follows the stan-
dard normal distribution. Firm i’s payoff is yxi − c(xi), where yxi is firm i’s
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revenue and c(xi) is firm i’s production cost. Consider the double misspeci-
fication model with A1 = a and A2 > a, where firm 2 is overconfident about
the demand and firm 1 is unaware of it. When A2 = a, simple algebra shows
that f ′1 f ′2 > 1 at the interior steady state θ ∗ = 0.5 if and only if c′′(xi) < 0.
By the continuity, the same is true for any A2 > a close to a. This means
that if the cost function is strictly concave at the steady state action, then
player 2’s small overconfidence leads to instability of the steady state.

As noted in Remark 1, for the steady state to be unstable in the environmental
problem, it is critical that the state θ and one’s belief about θ have conflicting
effects on the output y. Proposition 4 implies that the same is true for a general
setup, i.e., for a steady state to be unstable, it is necessary that ∂Q

∂θ and Qxi
∂xi
∂mi

have
opposite signs, at least for symmetric games with small misspecification. Indeed,
Proposition 4 asserts that in symmetric games with A1 = A2 = a, a steady state is
unstable if ∂θi

∂mi
> 1 or | f ′i (θ−i)|> 1.25 By the implicit function theorem, we have26

∂θi

∂mi
=−

Qxi
∂xi
∂mi

Qθ
and f ′i (θ−i) =

Qxi
∂xi
∂mi

Qxi
∂xi
∂mi

+Qθ
.

25Although it is not stated in Proposition 4, it is straightforward to show that these conditions
are necessary and sufficient for instability.

26The formal derivation is as follows. Note that θi(mi) is a solution to Q(xi(mi),x−i,θ ∗,a) =
Q(xi(mi), x̂−i(mi),θi,A). Let Q denote the left-hand side (the true mean) and Q̂ denote the right-
hand side (the subjective mean). Then by the implicit function theorem, we have

∂θi

∂mi
=−

Q̂xi
∂xi
∂mi

+ Q̂x−i
∂ x̂−i
∂mi

−Qxi
∂xi
∂mi

Q̂θ
=−

Qxi
∂xi
∂mi

Qθ
.

Here the second equality follows from the fact that we assume A1 = A2 = a (and hence Q = Q̂) and
symmetry. Similarly, fi(θ−i) is a solution to Q(xi( fi),x−i(θ−i),θ ∗,a) = Q(xi( fi), x̂−i( fi), fi,A).
With an abuse of notation, let Q denote the left-hand side and Q̂ denote the right-hand side. Then

f ′i (θ−i) =
Qx−i

∂x−i
∂θ−i

Q̂xi
∂xi
∂mi

+ Q̂x−i
∂ x̂−i
∂mi

+ Q̂θ −Qxi
∂xi
∂mi

=
Qxi

∂xi
∂mi

Qxi
∂xi
∂mi

+Qθ
.

Again, the second equality uses A1 = A2 = a and symmetry.

32



Hence the condition for instability can be rewritten as

−
Qxi

∂xi
∂mi

Qθ
> 1 or

∣∣∣∣∣ Qxi
∂xi
∂mi

Qxi
∂xi
∂mi

+Qθ

∣∣∣∣∣> 1. (21)

It is obvious that this condition requires Qθ and Qxi
∂xi
∂mi

to have different signs, as
claimed above.

3.5 Sufficient Conditions for Convergence

So far we have seen that one’s unawareness about the opponent’s misspecification
can influence a learning dynamic and cause non-convergence to an interior steady
state. However, this does not imply that one’s unawareness always cause non-
convergence, and indeed, there are many cases in which the beliefs do converge
to an interior steady state.

For example, consider the team production problem discussed in the last sub-
section, but assume now that the output function (20) is replaced with

y = a+(1−θ)(x1 + x2)+ ε. (22)

This new output function is similar to the previous one in that the output y is
increasing in the capability a and the total effort x1 + x2, and is decreasing in the
state θ . However, there is one critical difference: with this new output function,
the state θ has a negative impact on the marginal productivity (i.e., ∂ 2Q

∂xi∂θ < 0), and

and hence has a negative impact on the effort level (i.e., ∂xi
∂mi

< 0). Accordingly,

Qθ and Qxi
∂xi
∂mi

have the same sign, which means that the condition for instability
(21) is not satisfied.

Actually, in this example, players’ beliefs converge to the interior steady state
almost surely, regardless of the initial prior. Figure 6 is the phase portrait of the
solution to the ODE (17) for the double-misspecification model with A1 = A2 = a,
θ ∈ Θ = [0.3,0.7], θ ∗ = 0.5, and fixed ξ1 = ξ2. As illustrated in the figure, the
mean belief (m1,m2) converges to the steady state (the origin) for all initial values.
It is not difficult to show that the same result holds even when ξi is not fixed, and
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the next proposition ensures almost sure convergence in such a case. Given a
vector x ∈ R4 and a compact set A ⊂ R4, let d(x,A) = miny∈A |x− y| denote the
distance from x to the set A.
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Figure 5: Motion of m = (m1,m2)
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Figure 6: Graphs of f1 and f2

Definition 1. A set A ⊂ R4 is attracting if there is a set W such that A ⊆ intW
and such that for any ε > 0, there is T > 0 such that d((m(t),ξ (t)),A) < ε for
any initial value (m,ξ ) ∈W and for any t > T . A set A is globally attracting if it
is attracting and the stochastic process (mt ,ξ t) moves within the basin W almost
surely.

Proposition 5. Suppose that Assumption (i)-(v) in Proposition 3 hold. Assume
also that liminft→∞ mt

i > −∞ and limsupt→∞ mt
i < ∞ for each i with probability

one, and that there is K > 0 and α > 0 such that (15) and (16) hold for all t and
(mt ,ξ t). If a set A is globally attracting, then the process approaches this set A
almost surely, i.e., the probability of limt→∞ d((mt ,ξ t),A) = 0 is one regardless
of the initial prior. In particular, if A is a singleton, then the process converges to
this point almost surely.

The convergence result above relies on the assumption that the noise term ε
is normally distributed and the output function Q is linear in θ . Without these
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assumptions, the likelihood induced by a signal sequence (y1,y2, · · ·) need not be
a truncated normal distribution, and thus it is difficult to compute the exact shape
of the posterior belief µ t

i after a long time t. Nonetheless, we can still partially
characterize the limiting outcome in such a case; the next proposition establishes
global convergence, with a few technical assumptions.

As in the case of first-order misspecification, we assume identifiability, which
is formally defined as follows. Given a state θ and an action profile x=(x1,x2, x̂1, x̂2),
the Kullback-Leibuler divergence for player i is

Ki(θ ,x)=E
[

log
q(y|xi, x̂−i,Ai,θ)

q(y|x,a,θ ∗)

∣∣∣∣x,a,θ ∗
]
=
∫

q(y|x,a,θ ∗) log
q(y|xi, x̂−i,Ai,θ)

q(y|x,a,θ ∗)
dy,

and the Kullback-Leibuler divergence given an action frequency σ ∈△(X1×X2×
X1 ×X2) is

Ki(θ ,σ) =
∫

X
Ki(θ ,x)σ(dx).

These formulas are a bit different from those under first-order misspecification,
due to the inferential naivety; player i thinks that players play (xi, x̂−i), but the
actual actions are (xi,x−i). The identifiability requires that given any i and σ , the
Kullback-Leibulaer divergence Ki(θ ,x) has a unique minimizer θi(σ) and it is an
interior point.27

Proposition 6. Suppose that there is a unique steady state (x∗1,x
∗
2,θ1,θ2) and that

Q(xi, x̂ j,Ai,θi) = Q(x1,x2,a,θ ∗) for each i in this steady state. Suppose also that
the identifiability condition holds, and that for each parameter (θ1,θ2), there is a
unique Nash equilibrium (x1,x2, x̂1, x̂2). In addition, assume that

(i) For each i, f ∗i (θ−i) is a function (rather than a correspondence), and is
continuously differentiable in θ−i.

(ii) maxθ1 |
∂ f ∗2 (θ1)

∂θ1
|maxθ2 |

∂ f ∗1 (θ2)
∂θ2

|< 1.

Then players’ beliefs converge to the steady state almost surely, regardless of the
initial prior.

27Here we do not consider the Kullback-Leibuler divergence of hypothetical player i, because it
coincides with that of actual player j , i.
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Assumption (i) implies (and actually it is stronger than) asymptotic stability
of the steady state p in the single-agent learning problem. Indeed, when p is
unstable in the single-agent learning problem, fi(θ ∗

−i) consists of multiple points
as in Figure 3.

Assumption (ii) requires that each player’s steady-state belief fi is not too
sensitive to the opponent’s belief; this means that one’s learning is not influenced
by the the opponent’s learning by much, at least asymptotically. Proposition 6
shows that the beliefs converge under these conditions. This convergence theorem
applies to many economic applications.

The team production problem with the new output function (22) indeed satis-
fies these two assumptions: The curves in Figure 6 are the graphs of f1 (the blue
steeper curve) and f2 (the orange flatter curve). One can easily see that the slope
of the orange curve is less than one (i.e., |∂ f ∗2 (θ1)

∂θ1
| < 1) and that of the blue curve

is larger than one (i.e., |∂ f ∗1 (θ2)
∂θ2

|< 1).
In the proof of Proposition 6, we extend Esponda, Pouzo, and Yamamoto

(2021) and show that the asymptotic motion of the KL minimizer θ t
i = θi(σ t)

is approximated by a differential inclusion, which is somewhat similar to the dif-
ferential equation (17). This result is weaker than what we have seen in the case
of Gaussian noise (i.e., approximation by (17) and (18)), because given an initial
value, our differential inclusion has multiple solutions, and our theorem does not
tell us which solution approximates the actual evolution of θ t

i . In other words, our
differential inclusion is a “loose” approximation of the motion of the KL mini-
mizer.

However, it turns out that this result is good enough to establish global con-
vergence. As can be seen in the proof, if the assumptions stated in Proposition 6
hold, we can show that the steady state is globally attracting: All solutions to the
differential inclusion converge to the steady state, regardless of the initial value.
This immediately implies global convergence to the steady state, as claimed in
Proposition 6.
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4 Related Literature and Concluding Remarks

There is a rapidly growing literature on Bayesian learning with model misspec-
ification. Nyarko (1991) presents a model in which the agent’s action does not
converge. Fudenberg, Romanyuk, and Strack (2017) consider a general two-
state model and characterize the agent’s asymptotic actions and behavior. Ba
and Gindin (2023), He (2022), and Heidhues, Kőszegi, and Strack (2018, 2021)
study a continuous-state setup, and they show that the agent’s action and be-
lief converge to a Berk-Nash equilibrium of Esponda and Pouzo (2016), under
some assumptions on payoffs and information structure. Esponda, Pouzo, and Ya-
mamoto (2021) characterize the agent’s asymptotic behavior in a general single-
agent model. Fudenberg, Lanzani, and Strack (2021) discuss stability of steady
states. All these papers look at a single-agent problem or a multi-agent setup in
which each player’s bias (first-order misspecification) is common knowledge.

Higher-order misspecification has been studied in the literature on social learn-
ing (e.g., DeMarzo, Vayanos, and Zwiebel, 2003; Eyster and Rabin, 2010; Gagnon-
Bartsch and Rabin, 2016; Bohren and Hauser, 2021). Most of these papers do not
discuss discontinuity of the equilibrium outcome, and indeed, one of the main
result of Bohren and Hauser (2021) is that the long-run outcome is robust to a
small perturbation of the information structure. An exception is Frick, Iijima,
and Ishii (2020), who show that the equilibrium outcome is discontinuous in the
information structure in a model of information aggregation. As explained in In-
troduction, a key assumption is that the agents observe a noise signal about the
state only once, which leads to discontinuity of the steady state. In contrast, in our
model, the agents have repeated feedbacks about the state, and accordingly the
steady states are continuous in the information structure. Nonetheless the equi-
librium outcome is discontinuous, because a small misspecification influences the
entire learning dynamics and the convergence probability suddenly drops to zero.

In this paper, we have focused on a particular form of higher-order misspeci-
fication, where both players are unaware of the opponent having a different view
about the world. Of course, there are many other forms of higher-order misspec-
ification which are prevalent in the real world. For example, in some markets, a
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fraction of consumers is overconfident; cellular phone customers tend to under-
estimate their usage next month, gym members tend to overestimate how often
they will visit the gym, and so on.28 In these cases, misspecification can be on one
side, i.e., the consumers are misspecified while the companies are rational and
understand the consumers’ overconfidence. It turns out that this type of one-sided
double misspecification also leads to the discontinuity of the equilibrium outcome
as in our model, i.e., small overconfidence leads to a complete breakdown of cor-
rect learning.29 This shows that our model is just an example in which the equi-
librium outcome is sensitive to small misspecification. For future research, it may
be interesting to study whether other forms of misspecification lead to this kind of
sensitivity.
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Appendices

A Asymptotic Behavior of Misspecified Players
In this appendix, we will characterize the asymptotic behavior of players’ be-
liefs, which is useful to establish the convergence theorems presented in the main
text. It takes two steps. As a first step, we will develop a general model which
encompasses both first-order misspecification and double misspecification as spe-
cial cases, and show that the motion of players’ action frequency is asymptotically
approximated by a solution to a differential inclusion. This result can be seen as a
generalization of the main theorem of Esponda, Pouzo, and Yamamoto (2021) to
the case with multiple players and continuous actions. When actions are contin-
uous, the action frequency becomes an infinite-dimensional vector, so we have to
carefully choose a norm for the set of action frequencies; indeed, the meaning of
“approximation” can be very different for different choices of the norm. We find
that the result similar to Esponda, Pouzo, and Yamamoto (2021) holds if we use
the dual bounded-Lipschitz norm.

This result is useful because it characterizes players’ asymptotic behavior us-
ing a deterministic dynamic process (a differential inclusion) which does not in-
volve a stochastic component. However, in our continuous-action setup, this dif-
ferential inclusion becomes an infinite-dimensional problem, and in practice, it is
impossible to solve such a differential inclusion, So as a second step, we show
that under some technical assumption, the asymptotic motion of players’ beliefs
can be approximated by a more tractable, finite-dimensional differential inclusion.
This result is new to the literature, and as will be seen, it plays a key role in the
proof of our convergence theorems (Propositions 1 and 6).

A.1 General Setup
For each compact set A ⊂ Rn (or more generally, separable metric space A), let
△A denote the set of probability measures over the set A. We consider the dual
bounded-Lipschitz norm on △A, that is, for each µ ∈△A, let

∥µ∥= sup
f∈BL(A)

∫
A

f dµ

where BL(A) is the set of bounded Lipschitz continuous functions f on A with
supx∈A | f (x)|+ supx,y

| f (x)− f (y)|
|x−y| ≤ 1. This norm has two nice properties. First,
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it metrizes the weak topology, that is, the topology induced by the dual bounded-
Lipschitz norm coincides with the weak topology on △A. Second, with this norm,
△A is a compact subset of a Banach space, i.e., the set of finite signed measures on
A is a Banach space when paired with the dual bounded-Lipschitz norm, and △A is
a compact subset in it. See Dudley (1966) and Billingsley (1999) for references.
The first property is needed to obtain our Proposition 9. The second property
is crucial in order to use a stochastic approximation technique in the proof of
Proposition 10. The dual bounded-Lipschitz norm is used in Hofbauer, Oechssler,
and Riedel (2009) and Perkins and Leslie (2014), who study learning dynamics in
games with continuous actions.

A.1.1 Objective World

There are two players i = 1,2 and infinitely many periods t = 1,2, · · · . In each
period t, each player i chooses an action xi from a compact set Xi ⊂ R. These
actions are not observable. Then they observe a noisy public output y ∈ Y which
is distributed according to a probability measure Q(·|x) ∈△Y , where x = (x1,x2)
denotes the chosen action profile. Each player i’s payoff is ui(xi,y).

In the infinite-horizon game, each player i’s t-period history is ht
i =(xτ

i ,y
τ)t

τ=1,
where (xt

i,y
t) is player i’s action and the public outcome in period t. Let Ht

i denote
the set of all t-period history, and let H0

i = { /0}. Player i’s pure strategy in the
infinite-horizon game is a mapping si :

⋃∞
t=0 Ht

i → Xi. Let Si denote the set of
player i’s pure strategies. Let ht

Y = (yτ)t
τ=1 denote the t-period public history. A

strategy is public if it depends only on public histories.

A.1.2 Subjective World and Model Hierarchy

We assume that the output distribution Q is not common knowledge among play-
ers. Instead, each player i has a set Θi,1 of subjective models, and in each model
θi,1 ∈ Θi,1, the output distribution given an action profile x is Qθi,1(·|x). Player
i thinks that the true world is described by one of these models, and her initial
prior about the model is µi,1 ∈△Θi,1. Player i’s models are correctly specified if
there is θi,1 such that Q(·|x) = Qθi,1(·|x) for all x. Otherwise her models are mis-
specified. Player i also has models about the opponent j’s model, that is, player i
believes that the opponent j has an initial prior µi,2 over a model set Θi,2, where
each model θi,2 induces the output distribution Qθi,2(·|x) for each action profile x.
This triplet Mi,2 = (µi,2,Θi,2,(Qθi,2(·|x))(x,θi,2)) is player i’s second-order model in
that it is her subjective view about player j’s subjective model. More generally, we
assume that each player i has a model hierarchy Mi = (Mi,1,Mi,2, · · ·) where each
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Mi,k = (µi,k,Θi,k,(Qθi,k(·|x))(x,θi,k)) is player i’s kth-order model. That is, player i
believes that player j believes that player i’s model is Mi,3, player i believes that
player j believes that player i believes that player j’s model is Mi,4, and so on.

This framework is flexible and allows us to study a variety of information
structures. For example, we obtain the model of first-order misspecification stud-
ied in Section 2 when M1,1 = M2,2 = M1,3 = M2,4 = M1,5 = · · · , M2,1 = M1,2 =
M2,3 = M1,4 = M2,5 = · · · , and M1,1 is correctly specified; here the first con-
dition implies that player 1’s model M1,1 is common knowledge, and the sec-
ond condition implies that player 2’s model M2,1 is common knowledge. Simi-
larly, we obtain the model of double misspecification studied in Section 3 when
Mi,1 = Mi,2 = Mi,3 = · · · for each i.

In what follows, we will maintain the following technical assumptions.

Assumption 1. The following conditions hold:

(i) Y and Θ are Borel subsets of the Euclidean space, and Θ is compact.

(ii) There is a Borel probability measure ν ∈△Y such that Q(·|x) and Qθi,k(·|x)
are absolutely continuous with respect to ν for all x and i, k, and θi,k.
(An implication is that there are densities q(·|x) and qθi,k(·|x) such that∫

A q(y|x)ν(dy) = Q(A|x) and
∫

A qθi,k(y|x)ν(dy) = Qθi,k(A|x) for any A ⊆ Y
Borel.)

(iii) q(·|x) and qθi,k(·|x) are continuous in θ and x.

(iv) There is a function g : X ×Y → R such that (a) for each y, g(x,y) is contin-
uous in x, (b) g(x, ·) ∈ L2(Y,Q(·|x)) for each x, and (c) for all x, x̂ i, k, and
θi,k, log q(·|x)

qθi,k (·|x̂)
≤ g(x, ·) Q(·|x)-a.s. .

The parts (i)-(iii) are fairly standard. The part (iv) implies that every outcome
y is generated by each player i’s model, which is useful to establish a uniform
version of the law of large numbers. The assumption above is similar to As-
sumptions 1 and 2 of Esponda, Pouzo, and Yamamoto (2021), but there are two
differences. First, we allow the action set Xi to be continuous, in which case we
require continuity of q, as described in parts (iii) and (iv-a). Second, we allow
inferential naivety, so when we consider the log-likelihood log q(·|x)

qθi,k (·|x̂)
of the true

output probability and the subjective probability, we distinguish the actual action
profile x from the inferred action profile x̂.

Recall that in the cases of first-order misspecification and double misspecifi-
cation, each player i believes that (i) her view Mi,1 about the world is common
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knowledge (i.e., Mi,1 = Mi,3 = Mi,5 = · · · ) and that (ii) her view Mi,2 about the op-
ponent’s view about the world is common knowledge (i.e., Mi,2 = Mi,4 = Mi,6 =
· · · ). This ensures that player i’s decision making problem is equivalent to solving
a game played by this player i and a hypothetical player.30 In the general model
here, we will impose a (similar but) weaker assumption:

Assumption 2. Player i believes that the models (Mi,ki ,Mi,ki+1) are common knowl-
edge after level ki <∞, that is, for each i, there is ki <∞ such that (Mi,ki ,Mi,ki+1) =
(Mi,ki+2n,Mi,ki+1+2n) for each n = 1,2, · · · .

For the special case in which ki = 1, this assumption implies that player i
believes that the models (Mi,1,Mi,2) are common knowledge, just as in the case of
first-order misspecification and double misspecification. The assumption above is
more general than that, because it allows ki > 1; in such a case, the assumption
implies that player i believes that models are common knowledge at higher levels,
i.e., she believes that the opponent believes that · · · that the models (Mi,ki ,Mi,ki+1)
are common knowledge. Note that this assumption is about whether player i
thinks that the models are common knowledge, and not about whether the models
are common knowledge in the objective sense. We believe that Assumption 2 is
satisfied in most applications.31

Pick ki as stated in Assumption 2. Then player i’s problem is strategically
equivalent to solving the following hypothetical game with ki +1 agents:

• Each period, each agent k = 1,2, · · · ,ki+1 chooses an action x̂i,k from a set
X̂i,k, where X̂i,k = Xi for odd k, and X̂i,k = X j for even k.

• Agent 1 is player i herself. She has the model Mi,1, and thinks that her
opponent is agent 2. That is, she thinks that the distribution of the public
outcome is Qθi,1(x̂i,1, x̂i,2) for some θi,1, where (x̂i,1, x̂i,2) is the action chosen
by agents 1 and 2.

• Other agents are hypothetical players appearing in player i’s reasoning.
Each agent k = 2,3, · · · ,ki + 1 has the model Mi,k, and thinks that her op-
ponent is agent k+ 1. That is, she thinks that the distribution of the public

30In the case of first-order misspecification, this hypothetical player is redundant in that her
action coincides with the actual player’s action. So such a hypothetical player does not appear in
our analysis in Section 2.

31This assumption is needed to establish Propositions 9 and 10. Indeed, if this assumption is
not satisfied, then we need infinite agents to describe player i’s reasoning, so the set X̂ becomes
the product of infinitely many X1 and X2. This set X̂ is not separable (it is well-known that the
l∞-space is not separable), so the dual bounded-Lipschitz norm on △X̂ may not coincide with the
topology of weak convergence.
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outcome is Qθi,k(x̂i,k, x̂i,k+1) for some θi,k. Here, agent ki +2 refers to agent
ki, so agents ki and ki +1 play the game with each other.

• All the information structure above is common knowledge among the agents.

Intuitively, agent 1’s action x̂i,1 in this hypothetical game is player i’s actual action,
agent 2’s action x̂i,2 is player i’s prediction about the opponent j’s action, agent
3’s action x̂i,3 is player i’s prediction about j’s prediction about i’s action, and
so on. So the action profile x̂i = (x̂i,k)

ki+1
k=1 in this hypothetical game is essentially

player i’s prediction hierarchy. Let X̂i =×ki+1
k=1 Xi,k denote the set of all these action

profiles.
In what follows, each agent k in this hypothetical game is labelled as (i,k),

because these agents describe player i’s reasoning. The opponent j has a different
model hierarchy M j , Mi, and hence her reasoning is represented by a different
set of agents labelled as ( j,k).

Let ŝi,k denote agent (i,k)’s strategy in the infinite-horizon hypothetical game,
and let ŝi = (ŝi,k)

ki+1
k=1 denote a strategy profile. This profile ŝi is also interpreted

as player i’s prediction hierarchy about strategies in the infinite-horizon game.
That is, ŝi,1 is player i’s actual strategy, ŝi,2 is player i’s prediction about player j’s
strategy, and so on. So ŝi,k ∈ Si for odd k, and ŝi,k ∈ S j for even k. We assume that
each ŝi,k is pure and public.

Given a pure strategy profile ŝi = (ŝi,k) in the hypothetical game, each agent
k’s posterior belief µ̂ t+1

i,k ∈ △Θi,k can be computed using Bayes’ rule, after every
public history ht

Y . Formally, for each t and k, we have

µ̂ t+1
i,k (θi,k) =

µ̂ t
i,k(θi,k)Qθi,k(y

t |ŝi,k(ht−1
Y ), ŝi,k+1(ht−1

Y ))∫
Θi,k

µ̂ t
i,k(θi,k)Qθi,k(y

t |ŝi,k(ht−1
Y ), ŝi,k+1(ht−1

Y ))dθi,k

where ŝi,ki+2 = ŝi,ki . Here we use the fact that agent k thinks that the signal yt in
period t is drawn given the action profile (ŝi,k(ht−1

Y ), ŝi,k+1(ht−1
Y )), where ŝi,k(ht−1

Y )

is her own action, and ŝi,k+1(ht−1
Y ) is the opponent k + 1’s action. The above

formula is valid only if no one deviates from the profile ŝi; if some agent k deviates,
then her posterior belief must be computed using a different formula. A strategy
profile ŝi is Markov if each agent’s strategy depends only on the belief hierarchy
µ̂ t

i , i.e., for each k and t, ŝi,k(ht
Y ) depends on ht

Y only through µ̂ t+1
i .

Example 1. (Myopically optimal agents) Suppose that the agents are myopic and
maximize their expected stage-game payoffs each period. In such a case, they
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play a one-shot equilibrium given a belief-hierarchy µ̂ t in each period t. Recall
that each agent (i,k) thinks that her opponent is agent (i,k+1), so her subjective
expected stage-game payoff given a model θi,k is

Uθi,k(x̂i,k, x̂i,k+1) =
∫

Y
ui,k(x̂i,k,y)Qθi,k(dy|x̂i,k, x̂i,k+1)

where ui,k = u1 when i+k is even, and ui,k = u2 when i+k is odd. So the strategy
profile ŝi must satisfy the following equilibrium condition:

ŝi,k(µ̂i) ∈ arg max
x̂i,k∈X̂i,k

∫
Θi,k

Uθi,k(x̂i,k, ŝi,k+1(µ̂i))µ̂i,k(dθi,k) ∀k∀µ̂i. (23)

It is obvious that this strategy profile ŝi is Markov.

Example 2. (Dynamically optimal agents) Now consider dynamically optimal
agents, who maximize the expectation of the discounted sum of the stage-game
payoffs, ∑∞

t=1 δ t−1ui,k(x̂i,k,y). Many applied papers use Markov perfect equilibria
as a solution concept. In our context, ŝi is a Markov perfect equilibrium if given
any belief hierarchy µ̂i, the continuation strategy profile ŝi|µ̂i satisfies

ŝi,k|µ̂i ∈ argmax
ŝi,k

∫
Θi,k

∞

∑
t=1

δ t−1E[Uθi,k(x̂
t
i,k,x

t
i,k+1)|ŝi,k, ŝi,k+1|µ̂i ]µ̂i,k(dθi,k)

for each k, where the expectation is taken over (x̂t
i,k,x

t
i,k+1).

Let h=(xt ,yt)∞
t=1 denote a sample path (a history in the infinite-horizon game).

Also, let X̂ = X̂1 × X̂2 be the product of the sets of all action profiles of the two
hypothetical games. Given a sample path h and given strategy profiles ŝ = (ŝ1, ŝ2)
of the two hypothetical games (for players 1 and 2), let σ t(h) ∈ △X̂ denote the
action frequency up to period t, that is,

σ t(h)[(x̂1, x̂2)] =
1
t

t

∑
τ=1

1{ŝi,k(h
τ−1
Y )=x̂i,k ∀i∀k}.

Intuitively, σ t(h)[(x̂1, x̂2)] describes how often the action profile x̂i was chosen in
each hypothetical game. (In other words, it describes how often each player i made
a prediction hierarchy x̂i.) Note that we cannot directly observe the actions x̂i,k of
the higher-level agents (i,k) with k ≥ 2, as they are hypothetical agents. However,
since each agent uses a public strategy ŝi,k, we can back it up from the past public
history; given a history hτ−1

Y , the hypothetical agent k’s action in period τ must be
ŝi,k(hτ−1

Y ). This allows us to define the action frequency in the hypothetical game
as a function of the observed history h.
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A.2 Posterior Beliefs and Kullback-Leibler Divergence
We first show that after a long time t, the posterior belief is concentrated on the
models which best explain the data. Specifically, we show that the belief is con-
centrated on the models which minimize the Kullback-Leibler divergence, which
is defined as follows. Let σ ∈ △X̂ be a probability measure over X̂ . For each σ ,
the Kullback-Leibler divergence of model θi,k for agent k is defined as

Ki,k(θi,k,σ) =
∫

X̂

∫
Y

log
q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
Q(dy|x̂1,1, x̂2,1)σ(dx̂). (24)

Intuitively, Ki,k(θi,k,σ) measures the distance between the true output distribution
and the subjective distribution induced by agent k’s model θi,k. To see this, think
about the special case in which σ is a degenerate distribution 1x̂1,x̂2 . Then the
Kullback-Leibler divergence of model θi,k can be rewritten as∫

Y
log

q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
Q(dy|x̂1,1, x̂2,1).

This measures the distance between the true distribution q(·|x̂1,1, x̂2,1) and the sub-
jective distribution qθi,k(·|x̂i,k, x̂i,k+1) induced by the model θi,k. Indeed, this value
is always non-negative, and equals zero if and only if the true and subjective distri-
butions are the same. When σ is not a degenerate distribution, we take a weighted
sum of the Kullback-Leibler divergence over x̂ = (x̂1, x̂2), which leads to the defi-
nition of Ki,k(θi,k,σ) above.

As is clear from this formula, agent k’s subjective signal distribution qθi,k(y|x̂i,k, x̂i,k+1)
is potentially different from the true distribution q(y|x̂1,1, x̂2,1) in two ways. First,
agent k’s model θi,k can be misspecified in that the distribution qθi,k as a function
of the chosen action can be different from the true distribution q. Second, agent k
can have an inferential naivety. That is, while the true distribution is determined
by the actual actions chosen by players 1 and 2 (which is denoted by (x̂1,1, x̂2,1) in
our setup), agent k thinks that the output distribution is determined by the actions
chosen by agents k and k+1.

For each measure σ ∈△X̂ , let Θi,k(σ) denote the minimizers of the Kullback-
Leibler divergence, that is,

Θi,k(σ) = arg min
θi,k∈Θi,k

Ki,k(θi,k,σ).

Intuitively, this is the set of models which best explains the data when the past ac-
tion frequency was σ . The minimized Kullback-Leibler divergence is K∗

i,k(σ) =
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minθi,k∈Θi,k Ki,k(θi,k,σ). We first show that these minimizers have useful proper-
ties:

Lemma 1. For each i and k, (i) Ki,k(θi,k,σ)−K∗
i,k(σ) is continuous in (θi,k,σ),

and (ii) Θi,k(σ) is upper hemi-continuous, non-empty, and compact-valued.

The following proposition shows that after a long time t, the posterior is con-
centrated on the best models Θi,k(σ t). This extends Theorem 1 of Esponda,
Pouzo, and Yamamoto (2021) to the case with continuous action set Xi and with
multiple players. Let H denote the set of all sample paths h = (xt ,yt)∞

t=1. Given
strategy profiles ŝ, let Pŝ ∈ △X denote the probability distribution of the sample
path h. Given a sample path h, let µ̂ t

i (h) denote the belief hierarchy in period t.

Proposition 7. Given any i, k, and ŝ, Pŝ-almost surely, we have

lim
t→∞

∫
Θi,k

(Ki,k(θi,k,σ t(h))−K∗
i,k(σ

t(h)))µ̂ t+1
i,k (h)[dθi,k] = 0. (25)

Let H denote the set of sample paths h which satisfy (25). By Proposition 7,
Pŝ(H ) = 1.

A.3 Asymptotic Motion of Action Frequency
A.3.1 Stochastic Approximation and Differential Inclusion

Now we will show that given any Markov strategy ŝ, the asymptotic motion of the
action frequency σ t is approximated by a solution to a differential inclusion. Pick
a Markov strategy ŝ, and pick a sample path h ∈ H . By the definition, the action
frequency in each period is written as

σ t+1(h) =
t

t +1
σ t(h)+

1
t +1

1ŝ(µ̂t+1(h)).

That is, the action frequency in period t + 1 is a weighted average of the past
action frequency σ t and today’s action 1ŝ(µ̂t+1(h)). In what follows, we will show
that this second term 1ŝ(µ̂t+1(h)) can be written as a function of σ t , so that σ t+1 is
determined recursively.

Pick an arbitrary small ε > 0. Then let Bε : △X̂ → ∏2
i=1 ∏ki+1

k=1 △Θi,k be the
ε-perturbed belief correspondence defined as

Bε(σ) =

{
µ̂
∣∣∣∣∀i∀k

∫
Θi,k

(Ki,k(θi,k,σ)−K∗
i,k(σ))µ̂i,k(dθi,k)≤ ε

}
.
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Roughly, Bε(σ) is the set of all belief hierarchies µ̂ such that each µ̂i,k is concen-
trated on the best models Θi,k(σ) in the sense of (25), given the mixture σ .

Since h ∈H , there is T such that for all t > T , µ̂ t+1(h)∈ Bε(σ t). This in turn
implies that the action ŝ(µ̂ t+1) in period t+1 must be chosen from the ε-enlarged
policy correspondence Sε(σ t), which is defined as

Sε(σ) = {ŝ(µ̂)|∀µ̂ ∈ Bε(σ)}

for each σ . This immediately implies the following result:

Proposition 8. Pick a Markov strategy ŝ. Then given any h ∈ H , there is a
decreasing sequence {ε t}∞

t=1 with limt→∞ ε t = 0 such that

σ t+1(h) ∈ t
t +1

σ t(h)+
1

t +1
Sεt (σ t(h)).

This proposition implies that in a later period t, the action chosen in that period
is selected from the set Sε(σ t) for small ε . Now we ask how this set looks like in
the limit as ε → 0. Given a Markov strategy ŝ, let

Ŝ(µ) =
{

x̂
∣∣∣x̂ = lim

n→∞
ŝ(µ̂n) for some (µ̂n)∞

n=1 with lim
n→∞

(µ̂n) = µ̂
}

for each µ . This Ŝ is an upper hemi-continuous policy correspondence induced
by ŝ. It is obvious that ŝ(µ̂) ∈ Ŝ(µ̂) for each µ̂ . Also a standard argument shows
that Ŝ is indeed upper hemi-continuous with respect to µ̂ . Note that Ŝ = ŝ if ŝ is
continuous. Then define

S0(σ) = {x̂ ∈ Ŝ(µ̂)|∀µ̂ ∈ B0(σ)}

where
B0(σ) = {µ̂|µ̂i,k ∈△Θi,k(σ) ∀i∀k}.

The following proposition shows that when ε → 0, the set Sε(σ) which appears
in the previous proposition is approximated by S0(σ).

Proposition 9. Sε(σ) is upper hemi-continuous in (ε,σ) at ε = 0. So with the
dual bounded-Lipschitz norm, △Sε(σ) is upper hemi-continuous at ε = 0.

Propositions 8 and 9 suggest that after a long time, the motion of the action
frequency is approximated by

σ t+1(h) ∈ t
t +1

σ t(h)+
1

t +1
S0(σ t(h)),
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which is equivalent to

σ t+1(h)−σ t(h) ∈ t
t +1

(S0(σ t(h))−σ t(h))

That is, the drift of the action frequency, σ t+1(h)−σ t(h), should be proportional
to the difference between today’s action chosen from S0(σ t(h)) and the current ac-
tion frequency σ t(h). The next proposition formalizes this idea using the stochas-
tic approximation technique developed by Benaı̈m, Hofbauer, and Sorin (2005):
It shows that the asymptotic motion of the action frequency is described by the
differential inclusion

σ̇(t) ∈△S0(σ(t))−σ(t). (26)

In this differential inclusion, the drift of the action frequency is △S0(σ(t))−σ(t),
rather than S0(σ(t))−σ(t). The reason is as follows. As will be shown in Proposi-
tion 10 below, the differential inclusion (26) approximates the motion of the action
frequency in the limit as the period length in the discrete-time model shrinks to
zero. This means that a small time interval [t, t + ε] in the continuous-time model
should be interpreted as a collection of arbitrarily many periods in the discrete-
time model. Suppose now that players’ beliefs are in a neighborhood of µ during
this time interval [t, t + ε]. In all periods included in this interval, players choose
an action profile from the set S0(µ), and in particular, if S0(µ) contains two or
more action profiles, then different action profiles can be chosen in different peri-
ods. Accordingly, the action frequency during this interval can take any value in
△S0(µ), as described by the differential inclusion (26).32

To state the result formally, we use the following terminologies, which are
standard in the literature on stochastic approximation. Let τ0 = 0 and τt = ∑t

n=1
1
n

for each t = 1,2, · · · . Then given a sample path h, the continuous-time interpola-
tion of the action frequency σ t is a mapping w(h) : [0,∞)→△X̂ such that

w(h)[τt + s] = σ t(h)+
τ

τt+1 − τt
(σ t+1(h)−σ t(h))

for all t = 0,1, · · · and τ ∈ [0, 1
t+1). Intuitively, w represents the motion of the

action frequency as a piecewise linear path with re-indexed time. A mapping

32There is also a technical reason: In the proof of Proposition 10, we apply the stochastic
approximation method of Benaı̈m, Hofbauer, and Sorin (2005), which requires that the drift term
be a convex-valued (and upper hemi-continuous) correspondence. So we need to convexify the
drift term by taking △S0(σ(t)), rather than S0(σ(t)).
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σ : [0,∞) → △X̂ is a solution to the differential inclusion (26) with an initial
value σ ∈ △X̂ if it is absolutely continuous in all compact intervals, σ(0) = σ ,
and (26) is satisfied for almost all t. Since △S0(σ) is upper hemi-continuous with
closed convex values, given any initial value σ ∈ △X̂ , the differential inclusion
(26) has a solution. (See Theorem 9 of Deimling (1992) on page 117.) Let Z(σ)
denote the set of all these solutions given an initial value σ , and let Z =

⋃
σ Z(σ)

denote the set of all solutions.

Proposition 10. Pick a Markov strategy ŝ. Then for any T > 0 and any sample
path h ∈ H ,

lim
t→∞

inf
σ∈Z

sup
τ∈[0,T ]

∥w(h)[t + τ]−σ(τ)∥= 0.

When S0(σ) is a singleton for all σ (which means that the differential inclusion is
actually a differential equation), this reduces to

lim
t→∞

inf
σ∈Z(w(t))

sup
τ∈[0,T ]

∥w(h)[t + τ]−σ(τ)∥= 0.

A.3.2 Steady State and Generalized Berk-Nash Equilibrium

σ ∈ △X̂ is a steady state of the differential inclusion (26) if σ ∈ △S0(σ). The
following proposition shows that if the action frequency σ t converges, then its
limit point must be a steady state. The proof is exactly the same as Proposition 1
of EPY, and hence we omit it.

Proposition 11. Pick a Markov strategy s. Then for each sample path h ∈ H , if
the action frequency σ t(h) converges, then its limit point limt→∞ σ t(h) is a steady
state of (26).

In all the examples in this paper, we assume that the agents are myopic so
that the strategy profile ŝ satisfies (23). In this special case, steady states of our
differential inclusion are generalized Berk-Nash equilibria in the following sense:

Definition 2. A probability measure σ ∈△X̂ is a generalized Berk-Nash equilib-
rium (GBNE) if for each pure action profile x̂ = (x̂1, x̂2) in the support of σ , for
each i and for each k, there is a belief µ̂i,k ∈△Θi,k(σ) such that

x̂i,k ∈ argmax
x̂′i,k

∫
Θi,k

Uθi,k(x̂
′
i,k, x̂i,k+1)µ̂i,k(dθi,k).

A generalized Berk-Nash equilibrium is degenerate if it is a point mass on some
pure action profile x̂.
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In words, in a generalized Berk-Nash equilibrium σ , each action profile x̂
which has a positive weight in σ is a one-shot equilibrium for some belief µ̂ , and
this belief µ̂ is concentrated on the models Θi,k(σ) which minimize the Kullback-
Leibular divergence. In a non-degenerate GBNE which assign positive weights on
multiple action profiles x̂, different action profiles x̂ may be supported by different
beliefs µ̂ .

Proposition 12. Suppose that the strategy profile ŝ satisfies (23). Then any steady
state of our differential inclusion (26) is a generalized Berk-Nash equilibrium. So
for each sample path h ∈ H , if the action frequency σ t(h) converges, then its
limit point limt→∞ σ t(h) is a generalized Berk-Nash equilibrium.

Note that the action frequency may converge to non-degenerate equilibrium
σ , which assigns positive probability to multiple action profiles x̂. An intuition is
as follows. If the action frequency σ t converges to some σ , then from Proposition
7, the posterior belief µ̂ t will be concentrated on △Θ(σ) after a long time, that
is, µ̂ t is in a neighborhood of △Θ(σ) for large t. If all the beliefs in this neigh-
borhood induce the same equilibrium action x̂ (i.e., ŝ(µ̂) = x̂ for all beliefs µ̂ in a
neighborhood of △Θ(σ)), then the action frequency will eventually converge to a
point mass on x̂. But in general, this need not be the case; different beliefs µ̂ and
µ̂ ′ in this neighborhood may induce different equilibrium actions x̂ and x̂′. In such
a case, both x̂ and x̂′ can be chosen infinitely often on the path, and hence have
positive weights in the limiting action frequency σ .

Note, however, that in many applications, all GBNE are degenerate. Indeed, if
(i) there is a unique equilibrium x̂ for each belief µ̂ and (ii) identifiability holds in
that there is a unique minimizer θi,k of the Kullback-Leibular divergence for each
action frequency σ , then obviously any GBNE is degenerate. All our examples in
the paper satisfy these assumptions.

Proposition 12 above implies that when agents are myopic, a limiting action
frequency must be a GBNE. It turns out that the same result holds for dynami-
cally optimal agents, provided that identifiability holds and agents play a Markov
perfect equilibrium. This follows from the fact that under identifiability, the differ-
ential inclusion (26) for myopic agents is exactly the same as that for dynamically
optimal agents who play a Markov perfect equilibrium. So all the results pre-
sented i the main text of the paper area valid for dynamically optimal agents, as
long as identifiability holds.
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A.4 Motion of the KL Minimizer
A.4.1 Identifiability and Differential Inclusion

Our Proposition 10 shows that the asymptotic motion of the action frequency σ t

is described by the differential inclusion (26). However, solving the differential
inclusion (26) is not easy in general. For example, in many applications (including
the ones in this paper), there are continuous actions, in which case the action fre-
quency σ t is a probability distribution over an infinite-dimensional (continuous)
space, and thus the differential inclusion becomes an infinite-dimensional prob-
lem. In this section, we show that this dimensionality problem can be avoided
if we look at the asymptotic motion of the belief, rather than that of the action
frequency.

We will impose the following identifiability assumption, which requires that
there be a unique KL minimizer θi,k(σ) for each measure σ ∈△X̂ . This assump-
tion is satisfied in many applications, see Esponda and Pouzo (2016) for more
detailed discussions on this assumption.

Assumption 3. For each i, k, and σ , there is a unique minimizer θi,k(σ) ∈ Θi,k of
the Kullback-Leibular divergence Ki,k(θi,k,σ).

Since Θi,k(σ) is upper hemi-continuous in σ , under the identifiability assump-
tion, each KL minimizer θi,k(σ) is continuous in σ . The next lemma shows that
θ(σ) = (θi,k(σ))i,k is Lipschitz continuous if some additional assumptions hold.
With an abuse of notation, let Ki,k(θi,k, x̂) = Ki,k(θi,k,σ) for σ = 1x̂.

Assumption 4. The following conditions hold:

(i) For each i, k, and m, ∂Ki,k(θi,k,x̂)
∂θi,k,m

< ∞, where θi,k,m denotes the m-th compo-
nent of θi,k. Also for each x̂, Ki,k(θi,k, x̂) is twice-continuously differentiable

with respect to θi,k, that is, ∂ 2Ki,k(θi,k,x̂)
∂θi,k,m∂θi,k,n

is continuous in θi,k.

(ii) ∂Ki,k(θi,k,x̂)
∂θi,k,m

is equi-Lipschitz continuous, that is, there is L > 0 such that

|∂Ki,k(θi,k,x̂)
∂θi,k,m

− ∂Ki,k(θi,k,x̂′)
∂θi,k,m

|< L|x̂− x̂′| for all i, k, m, θi,k, x̂, and x̂′.

(iii) The KL minimizer θ(σ) satisfies both the first-order and second-order con-
ditions for each σ . (An implication is that the inverse of the Hessian matrix
exists.)
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Lemma 2. θ(σ) is Lipschitz continuous in σ . That is, there is L > 0 such that
|θ(σ)−θ(σ̃)| ≤ L∥σ − σ̃∥.

Now we consider the motion of the KL minimizer θ t = (θ t
i,k)i,k. Let wθ denote

the continuous-time interpolation of θ t . Let ∇Ki,k(θi,k,x) = (
∂Ki,k(θi,k,x)

∂θi,k,m
)m, and

∇K(θ ,x) = (
∂Ki,k(θi,k,x)

∂θi,k,m
)i,k,m. Also let ∇2Ki,k(θi,k,σ) denote the Hessian matrix

of Ki,k(θi,k,σ) with respect to θi,k, that is, each component of ∇2Ki,k(θi,k,σ) is
∂ 2Ki,k(θi,k,σ)
∂θi,k,m∂θi,k,n

. Let ∇2K(θ ,σ) denote a block diagonal matrix whose main diagonal

blocks are ∇2Ki,k(θi,k,σ), that is,

∇2K(θ ,σ) =

 ∇2K1,1(θ1,1,σ) 0
∇2K1,2(θ1,2,σ)

0 . . .

 .

With an abuse of notation, let S0(θ) denote S0(σ) for σ with θ(σ) = θ . The
following proposition shows that the asymptotic motion of the KL minimizer is
described by the differential inclusion

θ̇(t) ∈
⋃

σ :θ(σ)=θ(t)

⋃
σ ′∈△S0(θ(t))

−(∇2K(θ(t),σ))−1 (∇K(θ(t)),σ ′)
)
. (27)

Let Zθ (θ(0)) be the set of solutions to the differential inclusion (27) with the initial
value θ(0). Also let Zθ (θ(0)) =

⋃
θ(0)Zθ (θ(0)) denote the set of all solutions.

Proposition 13. Suppose that Assumptions 3 and 4 hold. Then for any T > 0 and
any sample path h ∈ H ,

lim
t→∞

inf
θ∈Zθ

sup
τ∈[0,T ]

|wθ (h)[t + τ]−θ(τ)|= 0.

In particular, when S0(σ) is a singleton for all σ , we have

lim
t→∞

inf
θ∈Zθ (wθ (h)[t])

sup
τ∈[0,T ]

|wθ (h)[t + τ]−θ(τ)|= 0.

To interpret the differential inclusion (27), consider the special case in which
Θi,k ⊂ R, i.e., assume that agent k’s model θi,k is one-dimensional. Then from
(26), we have

θ̇i,k(t) ∈
⋃

σ :θ(σ)=θ(t)

⋃
σ ′∈△S0(θ(t))

−
K′

i,k(θi,k(t),σ
′)

K′′
i,k(θi,k(t),σ)

(28)
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for each i and k, where K′
i,k(θ ,σ) =

∂Ki,k(θ ,σ)
∂θ and K′′

i,k(θ ,σ) =
∂ 2Ki,k(θ ,σ)

∂θ 2 .
The denominator K′′

i,k(θi,k(t),σ) measures the curvature of the Kullback-Leibular
divergence. Note that this term is always positive, because the second-order con-
dition must be satisfied (Assumption 4(iii)). So this term influences the absolute
value of θ(t), but not the sign of θ̇i,k(t); this in turn implies that this denominator
influences the speed of θi,k(t), but not the direction. Intuitively, when the curve
is flatter (i.e., K′′

i,k is close to zero), all models in a neighborhood of θ(t) almost
equally fit the past data. Hence the KL minimizer θ(t) is more sensitive to the new
data generated by today’s action, and it changes quickly.

The numerator −K′
i,k(θi,k(t),σ

′) measures how much an increase in θi,k im-
proves fitness to the new data generated by today’s action σ ′. This term influences
the sign of θ̇i,k(t), so it determines whether θi,k(t) moves up or down. Intuitively,
when this numerator is positive, (at least in a neighborhood of θ(t)) higher θ bet-
ter explains the new data generated by today’s action, so θ(t) moves up. On the
other hand, when this numerator is negative, lower θ better explains the new data,
so θ(t) moves down.

When we consider the dynamic of θ t = θ(σ t), the drift of θ t cannot be
uniquely determined, for two reasons. First, the KL minimizer θ t may not uniquely
determine the agents’ actions today, in the sense that S0(θ t) may not be a single-
ton. (As pointed out by Esponda, Pouzo, and Yamamoto (2021), in the single-
agent setup, this happens when the agent is indifferent over multiple actions at a
model θ = θ t .) In our differential inclusion (28), this multiplicity is captured by
taking the union over σ ′ ∈ △S0(θ(t)). Note that the same multiplicity problem
appears in the differential inclusion (26).

Second, the KL minimizer θ t may not uniquely determine the past action fre-
quency, in the sense that there may be more than one σ such that θ(σ) = θ t .
Note that even if two action frequencies σ and σ̃ yield the same KL minimizer
(i.e., θ(σ) = θ(σ̃)), they may yield different curvatures of the KL divergence, so
they influence the speed of θi,k(t) differently. In our differential inclusion, this
multiplicity is captured by taking the union over σ with θ(σ) = θ(t).

B Non-Convergence Theorem
In this appendix, we will extend the non-convergence theorem of Pemantle (1990)
and show that the same non-convergence result holds in our setup. This result is
used in the proofs of the various non-convergence results in the main text.
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Consider a stochastic difference equation

v(t +1)− v(t) =
1

t +1
(F(v(t))+b(t,v(t))ε) (29)

where v(t) ∈ Rn, F : Rn → Rn, b(t,v(t)) ∈ Rn, and ε ∼ N(0,1). We assume that
F is Lipschitz-continuous, and that there is b such that |bi(t,v)| < b for all i, t,
and v ∈ Rn, where bi(t,v) is the ith component of the vector b(t,v). This second
assumption essentially means that the variance of the noise is bounded.

A stochastic process {v(t)}∞
t=1 is a perturbed solution to (29) if it solves

v(t +1)− v(t) =
1

t +1
(
F̃(t,v(t))+b(t,v(t))ε

)
for some F̃ such that there is K > 0 and α > 0 such that for all t and v,

|F(v)− F̃(t,v)|< K
tα .

It follows from the theory of stochastic approximation (e.g, Theorem 2.1 of
Kushner and Yin (2003)) that if a stochastic process {v(t)} is a perturbed solution
to (29), and if this process {v(t)}∞

t=1 is bounded with probability one, i.e.,

Pr
(

limsup
t→∞

|v(t)|< ∞
)
= 1.

then the asymptotic motion {v(t)} is approximated by the ODE

dw(t)
dt

= F(v(t)). (30)

Here the meaning of “approximation” is the same as that in Proposition 10.
A point p∈ Rn is a steady state of the ODE if F(p) = 0. A steady state p is lin-

early unstable if the Jacobian of F at p has at least one eigenvalue with a positive
real part. Pemantle (1990) shows that there is zero probability of the stochastic
process converging to linearly unstable steady states, i.e., Pr(limt→∞ v(t) = p) = 0
for any linearly unstable steady state p, under a few technical assumptions. His
result does not apply to our setup, because (i) we consider a perturbed solution to
(29), (ii) the noise term ε has an unbounded support, and (iii) the noise term ε is
common for all variables, F1, · · · , Fn. An important consequence of the second
assumption (ii) is that the step size v(t + 1)− v(t) is bounded by c̃

t+1 , which is
frequently used in Pemantle’s proof.

The following proposition shows that these features are not essential and Pe-
mantle’s result still holds in our model.
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Proposition 14. Let p be a linearly unstable steady state of the ODE (30). Let H
be the affine space spanned by the eigenvectors associated with the eigenvalues
with negative real parts, and let H∗ be the set of all unit vectors orthogonal to
H. Assume that there is κ > 0, t∗ > 0, and a neighborhood U of p such that
|b(t,v) ·h| ≥ κ for all h ∈ H∗, t ≥ t∗, and v ∈U. If there is K and a neighborhood
U ′ of p such that |F(v)− F̃(t,v)|< K

t for all v ∈U ′ and t, then Pr(limt→∞ v(t) =
p) = 0.

C Proofs

C.1 Proof of Proposition 1
In this proof, we will use the tools developed in Section A. Let h = (xt ,yt)∞

t=1
denote a sample path of the infinite horizon game. Given a sample path h, let
σ t(h) ∈△X denote the action frequency up to period t, i.e.,

σ t(h)[x] =
|{τ ≤ t|xt = x}|

t

for each action profile x. Proposition 7 shows that almost surely, each player i’s
belief in a later period t will be concentrated on the minimizer of the KL diver-
gence (the surprise function) with weight σ t−1. More formally, there is a set H
of sample paths such that a sample path h must be in this set H with probability
one, and such that for any sample path h ∈ H , each player i’s belief in period t is
approximately 1θi(σ t−1(h)) for large t. This result immediately implies that player 1
correctly learns the true state θ ∗, as her KL minimizer is constant and θ1(σ) = θ ∗

for any frequency σ ∈△X .
We will show that player 2’s belief also converges to the steady-state belief

almost surely. For this, it suffices to show that for every sample path h ∈ H , her
KL minimizer θ2(σ t(h)) converges to the steady state. In what follows, we will
prove a bit stronger result; we allow multiple steady states, and show that for each
sample path h∈H , limt→∞ d(σ t(h),E2) = 0 where E2 is the set of all steady-state
beliefs θ of player 2. This implies that player 2’s belief converges even when the
steady state is not unique.

So pick an arbitrary sample path h ∈ H . To think about a dynamic of the KL
minimizer θ t

2(h) = θ2(σ t(h)), Proposition 13 is useful; it shows that the motion
of θ t

2 is asymptotically approximated by the differential inclusion (28), which
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reduces to the one-dimensional differential inclusion

θ̇2(t) ∈
⋃

σ :θ(σ)=θ(t)

−
K′

2(θ2(t),s(1θ∗ ,1θ2(t)))
K′′

2 (θ2(t),σ)
(31)

where K′
2 = ∂K2

∂θ and K′′
2 = ∂ 2K2

∂θ 2 . Here we ignore the dynamic of player 1’s KL
minimizer θ1, as it is constant and θ1(σ) = θ ∗ for all σ . With an abuse of notation,
let Zθ (θ) denote the set of solutions to the differential inclusion above with an
initial value θ ∈ Θ.

We will consider the following two cases separately.

C.1.1 Case 1: liminft→∞ θ t
2(h) , limsupt→∞ θ t

2(h).

We will show that [liminft→∞ θ t
2(h), limsupt→∞ θ t

2(h)]⊆ E2.
Suppose not, so that there is a model θ ′ ∈ [liminft→∞ θ t

2(h), limsupt→∞ θ t
2(h)]

such that θ ′ <E2. Then K′
2(θ

′,s(1θ∗ ,1θ ′)), 0, meaning that (i) K′
2(θ

′,s(1θ∗ ,1θ ′))>
0 or (ii) K′

2(θ
′,s(1θ∗ ,1θ ′))< 0. In what follows, we will focus on the case (i). The

proof for the case (ii) is symmetric.
Since K′

2(θ ,σ) is continuous in (θ ,σ) and s(1θ∗ ,1θ ) is continuous in θ , there
is ε > 0 such that K′

2(θ ,s(1θ∗ ,1θ ))> 0 for any θ with |θ −θ ′| ≤ ε . Pick such ε >
0. Then the right-hand side of (31) is positive for any θ(t) in the ε-neighborhood
of θ ′, which means that θ(t) increases as time goes in this neighborhood.33 Hence
there is T > 0 such that

θ2(t)≥ θ ′+ ε (32)

for any t ≥ T and for any solution θ2 ∈ Zθ (θ) to the differential inclusion with
any initial value θ with θ ≥ θ ′

2 − ε . Pick such T .
With an abuse of notation, let wθ (t) denote the continuous-time interpolation

of the KL minimizer (θ t
2(h))

∞
t=1. From Proposition 13, there is t∗ such that for any

t > t∗, θ2 ∈ Zθ (wθ (t)), and s ∈ [0,2T ],

|wθ (t + s)−θ2(s)|<
ε
2
. (33)

Pick such t∗. Since θ ′ ≤ limsupt→∞ θ t
2(h), there is t∗∗ > t∗ such that wθ (t∗∗) ≥

θ ′− ε . Pick such t∗∗. Then from (32), we have

θ2(s)≥ θ ′+ ε
33Note that K′′ < 0 because K is convex.
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for any s ≥ T and for any solution θ ∈ Zθ (wθ (t∗∗)). This inequality and (33)
implies

wθ (t∗∗+ s)≥ θ ′+
ε
2

∀s ∈ [T,2T ].

Likewise, since wθ (t∗∗+T )≥ θ ′+ ε
2 , it follows from (32) that

θ2(s)≥ θ ′+ ε

for any s ≥ T and for any solution θ2 ∈ Zθ (wθ (t∗∗+T )). This inequality and (33)
implies

wθ (t∗∗+ s)≥ θ ′+
ε
2

∀s ∈ [2T,3T ].

Iterating this argument, we can show that

wθ (t∗∗+ s)≥ θ ′+
ε
2

∀s ∈ [T,∞).

But this means that liminft→∞ θ t
2(h)≥ θ ′+ ε

2 , which is a contradiction.

C.1.2 Case 2: liminft→∞ θ t
i,k(h) = limsupt→∞ θ t

i,k(h).

In this case, limt→∞ θ t
i,k(h) exists. Let θ ∗

i,k = limt→∞ θ t
i,k(h). We will show that

θ ∗
i,k ∈ E.

Suppose not so that θ ∗ < E. Then as in the previous case, (i) K′
i,k(θ

∗
i,k,σ

′)> 0
for all σ ′ ∈ △S0(θ(θ ∗

i,k)), or (ii) K′
i,k(θ

∗
i,k,σ

′) < 0 for all σ ′ ∈ △S0(θ(θ ∗
i,k)). We

will focus on the case (i).
As in the previous case, there is ε > 0 such that K′

i,k(θi,k,σ ′) > 0 for any θi,k

with |θi,k − θ ∗
i,k| ≤ ε and any σ ′ ∈ △S0(θ(θi,k)). Pick such ε > 0. Then pick T

such that (32) holds for any t ≥ T and for any solution θ ∈ Zθ (θ(θi,k)) with any
θi,k with θi,k ≥ θ ∗

i,k − ε .
From Proposition 13, there is t∗ such that (33) holds for any t > t∗, θ ∈

Z′
θ (wθ (t)), and s ∈ [0,2T ]. Pick such t∗. Since θ ∗

i,k = limt→∞ θ t(h), there is
t∗∗ > t∗ such that wθ ,i,k(t∗∗) ≥ θ ∗

i,k − ε . Pick such t∗∗. Then as in the previous
case, we can show that

wθ ,i,k(t∗∗+ s)≥ θ ∗
i,k +

ε
2

∀s ∈ [T,∞).

But this means that limt→∞ θ t
i,k(h)≥ θ ∗

i,k +
ε
2 , which is a contradiction. Q.E.D.

60



C.2 Proof of Proposition 2
For part (i), note that when A2 = a(= A1), players have the same view about the
world and hence have the same posterior belief µ t

1 = µ t
2 every period. Hence the

problem reduces to the classical individual learning problem with no misspecifi-
cation, and the result follows from a standard argument (a version of the law of
large numbers).

So in what follows, we will prove part (ii) of the proposition. We will first
show that the process converges to the interior steady state with zero probability.
Then we will show that the process converges to the boundary steady states.

Part 1: Non-convergence to p First, we will show that there is zero probability
of the process converging to the interior steady state p. For this, it suffices to show
that assumptions (i)-(vii) stated in Proposition 3 hold and that the interior steady
state p is linearly unstable.

From the first-order condition, a Nash equilibrium (xi, x̂−i) given θi is unique
and xi = x̂−i = 1−θi. Hence assumption (i) holds.

Assumptions (ii)-(v) are obviously satisfied. To check assumptions (vi), let
m̃(m,ξ ) denote the mean of the truncated normal Ñ(m, 1

ξ ). Since each player’s

payoffs are linear in θ , given a posterior belief µ t
i = Ñ

(
mt

i,
1

(t−1)ξ t
i

)
, player i and

hypothetical player j chooses a Nash equilibrium for a state θ = m̃(mt
i,(t −1)ξ t

i ).
So from the Lipschitz-continuity of θi and Ii, assumption (vi) follows from part
(iv) of the next lemma. (Parts (i)-(iii) of this lemma are not used here, but we will
use them when we prove convergence to the boundary steady states.)

Lemma 3. There is k > 0 and t > 0 such that for all t > t and all ξ which arises
on the equilibrium path,

(i) |m̃(m, tξ )−m|< k√
t for all m ∈ Θ,

(ii) |m̃(m, tξ )−θ |< k√
t for all m < θ ,

(iii) |m̃(m, tξ )−θ |< k√
t for all m > θ .

Also, for any interior point θ ∗ ∈ Θ, there is a neighborhood U of θ ∗, k > 0, and
t ′ > 0 such that for all t > t ′ and m ∈U,

(iv) |m̃(m, tξ )−m|< k
t .
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Proof. Let ξ be the minimum of Ii(xi, x̂−i) over all actions (xi, x̂−i) which can
be chosen on the equilibrium path, and we will show that (i)-(iv) hold for this
particular ξ . Then it is straightforward to see that (i)-(iv) holds for all other ξ .

Let ϕ denote the pdf of the standard normal N(0,1), and let Φ denote its cdf.
Pick some truncated normal distribution Ñ(m, 1

tξ ). It is well-known that that the
mean of this truncated normal distribution is

m̃(m, tξ ) = m+
1√
tξ

· ϕ(
√

tξ (θ −m))−ϕ(
√

tξ (θ −m))

Φ(
√

tξ (θ −m))−Φ(
√

tξ (θ −m))
(34)

Since ϕ(x) = 1√
2π exp(−0.5x2)≤ 1√

2π ,

|ϕ(
√

tξ (θ −m))−ϕ(
√

tξ (θ −m))|< 1√
2π

.

Also there is t > 0 such that for all m ∈ Θ and t > t,

Φ(
√

tξ (θ −m))−Φ(
√

tξ (θ −m))>
1
3
. (35)

Plugging these into (34), we have

|m̃(m, tξ )−m|< 1√
tξ

· 3√
2π

for all m ∈ Θ and t > t, which implies (i).
Next, we will prove (iv). Note that

|ϕ(
√

tξ (θ −m))−ϕ(
√

tξ (θ −m))|= 1√
2π

∣∣∣∣∣∣
(

1

(
√

e)(θ−m)2

)tξ

−
(

1
(
√

e)(θ−m)2

)tξ
∣∣∣∣∣∣ .

Pick θ ∗ ∈ (θ ,θ). Then there is a neighborhood U of θ ∗ such that we have
1

(
√

e)(θ−m)2
< 1 and 1

(
√

e)(θ−m)2
< 1 for all m ∈U . Then there is t ′ such that

|ϕ(
√

tξ (θ −m))−ϕ(
√

tξ (θ −m))|< 1
t

for all m ∈U and t > t ′. Plugging this and (35) into (34), we have (iv).
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Finally, we will prove (ii) and (iii). Let ϕ̃(m, 1
ξ ) denote the pdf of the truncated

normal Ñ(m, 1
ξ ). Then for any x > 0 and m < θ ,

ϕ̃
(

θ , 1
ξ

)
[θ + x]

ϕ̃
(

θ , 1
ξ

)
[θ ]

=
ϕ(
√

ξ x)
ϕ(0)

>
ϕ(
√

ξ (θ −m+ x))

ϕ(
√

ξ (θ −m))
=

ϕ̃
(

m, 1
ξ

)
[θ + x]

ϕ̃
(

m, 1
ξ

)
[θ ]

.

This means that the truncated normal Ñ(θ , 1
ξ ) first-order stochastically dominates

Ñ(m, 1
ξ ) for all m < θ . Hence

θ < m̃(m,ξ )< m̃(θ ,ξ )

for all m < θ . Together with part (i) of the lemma, we obtain (ii). The proof of
(iii) is similar and hence omitted. Q.E.D.

Next, we will check (vii). We need to show that ( 1√
I1
, 1√

I2
) is not an eigenvec-

tor of J′, i.e., (
∂θ1
∂m1

−1 ∂θ1
∂m2

∂θ2
∂m1

∂θ2
∂m2

−1

) 1√
I1(p)
1√
I2(p)

 , λ ·

 1√
I1(p)
1√
I2(p)


for any λ ∈ R. This is equivalent to show that(

∂θ1

∂m1
−1
)
+

∂θ1

∂m2

√
I1(p)√
I2(p)

,
∂θ2

∂m1

√
I2(p)√
I1(p)

+

(
∂θ2

∂m2
−1
)
. (36)

Note that θi(m) solves Q(xi(mi), x̂−i(mi),Ai,θi) = Q(xi(mi),x−i(m−i),a,θ ∗).
By the implicit function theorem, we have

∂θi

∂mi
=−

∂Qi
∂xi

∂xi
∂mi

+ ∂Qi
∂ x̂−i

∂ x̂−i
∂mi

− ∂Q∗

∂xi

∂xi
∂mi

∂Qi
∂θi

=−
2∂Qi

∂xi

∂xi
∂mi

− ∂Q∗

∂xi

∂xi
∂mi√

Ii
,

∂θi

∂m j
=

∂Q∗

∂x j

∂x j
∂m j

∂Qi
∂θi

=

∂Q∗

∂x j

∂x j
∂m j√
Ii

,

where Qi = Q(xi(mi), x̂−i(mi),Ai,θi) denotes player i’s subjective expectation of
the output and Q∗ = Q(xi(mi),x−i(m−i),a,θ ∗) is the true mean. Combining these
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two equalities, we have

∂θi

∂mi
−1+

√
Ii√
I j

∂θi

∂m j
=

−2∂Qi
∂xi

∂xi
∂mi

+ ∂Q∗

∂xi

∂xi
∂mi√

Ii
−1+

∂Q∗

∂x−i

∂x−i
∂m−i√
I−i

.

Using this equation, (36) can be rewritten as

−2∂Q1
∂x1

∂x1
∂m1√

I1
,
−2∂Q2

∂x2

∂x2
∂m2√

I2
,

which is further simplified to

− m1

1−m1
,− m2

1−m2

because xi = x̂−1 = 1− θi. This inequality indeed holds (and hence assumption
(vii) is satisfied), because mi

1−mi
is increasing in mi on the set Θ, and the consistency

condition implies that m∗
1 , m∗

2 in any interior steady state with A2 , A1 = a.
To conclude the proof, we will show that the interior steady state p is linearly

unstable. From Proposition 4 (i), it suffices to show that ∂θi(m)
∂mi

> 1 for each i. For

the special case with A1 = A2 = a, we have ∂θi(m)
∂mi

= 2. Then by the continuity, for

any A2 close to a, we still have ∂θi(m)
∂mi

> 1.

Part 2: Convergence to boundary beliefs We will first show that the stochastic
process (mt ,ξ t) is bounded with probability one. Recall that regardless of the
parameter Ai, a Nash equilibrium given a state θi is xi = x̂−i = 1−θi. Hence on
the equilibrium path, each player’s production is at least x = 1− θ but does not
exceed x = 1−θ .

Let mi be such that

Ai −mi(x+ x) = a−θ ∗(x+ x).

In words, mi ∈ R denotes a state with which player i’s subjective expectation about
the output matches the true mean, when player i thinks that the opponent chooses
the maximal effort x but in reality she chooses the minimal effort x. Note that this
mi is the minimum of θi(m) over all m, and that mi need not be in the state space
Θ. Similarly, let mi be such that

Ai −mi(x+ x) = a−θ ∗(x+ x).
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This is a state with which player i’s subjective expectation about the output matches
the true mean, when player i thinks that the opponent chooses the minimal effort
x but in reality she chooses the maximal effort x (which yields the most optimistic
belief mi). Note that this mi is the maximum of θi(m) over all m.

The following lemma shows that almost surely, mt
i is in a neighborhood of

[mi,mi] after a long time. This immediately implies that the process (mt ,ξ t) is
bounded almost surely; indeed, Ii(xτ) has the minimal value I = Ii(x,x) and the
maximal value I = Ii(x,x), so it is obvious that ξ t

i is always in the bounded interval
[I, I].

Lemma 4. Given any A2, almost surely, mi ≤ liminft→∞ mt
i ≤ limsupt→∞ mt

i ≤ mi
for each i.

From Lemma 3, it is obvious that there is K > 0 such that (15) and (16) hold
for α = 0.5. Then since the process is bounded with probability one, Theorem
2.1 of Kushner and Yin (2003) implies the following lemma: Given a realized
infinite-horizon outcome (mt ,ξ t)t=1∞ , define the continuous-time interpolation as
a mapping w : [0,∞)→ R4 such that

w[τt + s] = (mt ,ξ t)+
τ

τt+1 − τt
((mt+1,ξ t+1)− (mt ,ξ t))

for all t = 0,1, · · · and τ ∈ [0, 1
t+1). This w is an asymptotic pseudotrajectory of

the ODE if for any T > 0,

lim
t→∞

sup
τ∈[0,T ]

|w(t + τ)− s(w(t))[τ]|= 0 (37)

where s(m,ξ ) : R+ → R4 is a solution to the ODE (17) and (18) given the initial
value (m,ξ ).

Lemma 5. With probability one, w is an asymptotic pseudotrajectory of the ODE
(17) and (18).

This lemma implies that after a long time, the path w of the stochastic process
is approximated by the solution s to the ODE (17) and (18). So in order to know
the long-run outcome of the stochastic process, it suffices to investigate the ODE.

The next lemma characterizes the behavior of the solution to the ODE when
player 2’s overconfidence is small.
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Lemma 6. Pick a arbitrarily. There is A > a such that for any A2 ∈ [a,A) and i,
there are values θ ′

−i and θ ′′
−i with θ < θ ′

−i < θ ′′
−i < θ and differentiable functions

fi : [θ ′
−i,θ ′′

−i]→ Θ, f̃i : [θ ,θ ′′
−i]→ [θ ,mi], and f̂i : [θ ′

−i,θ ]→ [mi,θ ] such that the
following properties hold:

(i) f ′i (m−i)> 1 for all m−i, fi(θ ′
−i) = θ , fi(θ ′′

−i) = θ , f̃ ′i (m−i)< 0 for all m−i,
f̃i(θ) = mi, f̃i(θ ′′

−i) = θ , f̂ ′i (m−i)< 0 for all m−i, f̂i(θ ′
−i) = θ , f̂i(θ) = mi,

(ii) For any m−i < θ , θi(m)−mi is positive if mi < mi, is zero if mi = mi, and is
negative if mi > mi.

(iii) For any m−i ∈ [θ ,θ ′
−i), θi(m)−mi is positive if mi < f̃i(m−i), is zero if

mi = f̃i(m−i), and is negative if mi > f̃i(m−i),

(iv) For any m−i ∈ [θ ′
−i,θ ′′

−i], θi(m)−mi is positive if mi < f̂i(m−i), is zero if
mi = f̂i(m−i), is negative if mi ∈ ( f̂i(m−i), fi(m−i)), is zero if mi = fi(m−i),
is positive if mi ∈ ( fi(m−i), f̃i(m−i)), is zero if mi = f̃i(m−i), and is negative
if mi > f̃i(m−i).

v) For any m−i ∈ (θ ′′
−i,θ ], θi(m)−mi is positive if mi < f̂i(m−i), is zero if

mi = f̂i(m−i), and and is negative if mi > f̂i(m−i).

(vi) For any m−i > θ , θi(m)−mi is positive if mi < mi, is zero if mi = mi, and is
negative if mi > mi.

Proof. We will first explain how to choose θ ′
−i, θ ′′

−i, fi, f̃i, and f̂i. Let θ ′
−i be a

state θ which solves

Ai −θ(xi(θ)+ x−i(θ)) = a−θ ∗(xi(θ)+ x−i(θ)).

When Ai = a, the right-hand side (a−θ ∗(2−θ −θ)) is less than the left-hand side
(a−θ(2−2θ)) at θ = θ , and is greater than that at θ = θ ∗. Also the right-hand
side is increasing in θ . Hence θ ′

−i which solves the equality above is unique and
θ < θ ′

−i < θ ∗. Then by the continuity, the same result holds as long as A2 is close
to a.

Similarly, let θ ′′
−i be a state θ which solves

Ai −θ(xi(θ)+ x−i(θ)) = a−θ ∗(xi(θ)+ x−i(θ)).

Then again, for Ai close to a, θ ′′
−i is uniquely determined and θ ∗ < θ ′′

−i < θ . Hence
we have θ < θ ′

−i < θ ′′
−i < θ as stated in the lemma.
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Then for each m−i ∈ [θ ,θ ′′
−i], define f̃i(m−i) as a value mi which solves

Ai −mi(xi(θ)+ x−i(θ)) = a−θ ∗(xi(θ)+ x−i(m−i)),

i.e., with this belief mi, player i’s subjective expectation about the output matches
the true mean when she believes that the Nash equilibrium for θ will be chosen
but in reality the opponent chooses the Nash equilibrium action for m−i. Note that
the above equation is linear in mi, and hence indeed has a unique solution. By
the definition, f̃i(θ) = mi and f̃i(θ ′′

−i) = θ . Also by the implicit function theorem,
f̃i(m−i) is decreasing in m−i, as stated in the lemma.

Similarly, for each m−i ∈ [θ ′
−i,θ ], define f̂i(m−i) as a value mi which solves

Ai −mi(xi(θ)+ x−i(θ)) = a−θ ∗(xi(θ)+ x−i(m−i)).

Again this equation is linear in mi, and hence has a unique solution. Also it is easy
to check that f̂i(θ ′

−i) = θ , f̂i(θ) = mi, and f̂i(m−i) is decreasing in m−i.
Also for each m−i ∈ [θ ′

−i,θ ′′], define fi(m−i) as a value mi ∈ Θ which solves

Ai −mi(xi(mi)+ x−i(mi)) = a−θ ∗(xi(mi)+ x−i(m−i)).

To see that this equation has a solution, let

g(mi,m−i) = Ai −mi(xi(mi)+ x−i(mi))−a+θ ∗(xi(mi)+ x−i(m−i)).

By the definition of θ ′′
−i, g(θ ,θ ′′

−i) = 0. Then since g is decreasing in m−i, we
have g(θ ,m−i)≥ 0 for all m−i ∈ [θ ′

−i,θ ′′]. Likewise, since g(θ ,θ ′
−i) = 0. we have

g(θ ,m−i) ≤ 0 for all m−i ∈ [θ ′
−i,θ ′′]. Taken together, given any m−i ∈ [θ ′

−i,θ ′′],
we have g(θ ,m−i) ≤ 0 ≤ g(θ ,m−i), so there is at least one mi ∈ Θ which solves
g(mi,m−i) = 0. Also this solution is unique, because given any m−i ∈ [θ ′

−i,θ ′′],
g is strictly increasing in mi when mi ∈ Θ. (Note that g is a quadratic function of
mi.)

By the definition of θ ′
−i and θ ′′

−i, we have fi(θ ′
−i) = θ and fi(θ ′′

−i) = θ . Also,
by the implicit function theorem,

f ′i (m−i) =−
∂g

∂m−i

∂g
∂mi

=
θ ∗

−2+4mi −θ ∗ .

We have f ′i (m−i)= 2 at mi =m−i = θ ∗= 0.8 and f ′i (m−i)> 1 for any mi,m−i ∈Θ.
So all the properties stated in part (i) holds.
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Next, we will prove part (iv). Pick m−i ∈ (θ ′
−i,θ ′′

−i) arbitrarily. By the defini-
tion of f̂i, we have θi(m) = f̂i(m−i) for any mi ≤ θ . Hence θi(m)−mi is positive
for mi < f̂i(m−i), is zero for mi = f̂i(m−i), and is negative for mi ∈ ( f̂i(m−i),θ ],
as stated in the lemma.

For mi ∈ (θ , fi(m−i), we claim that θi(m)−mi is negative. Suppose not so
that θi(m)− mi ≥ 0. If θi(m)− mi = 0, then by the definition of fi, we must
have mi = fi(m−i), which contradicts with mi < fi(m−i). If θi(m)−mi > 0, then
there must be m′

i ∈ (θ ,mi) such that θi(m′
i,m−i)−m′

i = 0. (This is so because
θi(θ ,m−i)−θ < 0.) But then we must have m′

i = fi(m−i), which is a contradiction.
Hence θi(m)−mi is negative in this case.

By the symmetry, for mi > fi(m−i), all the properties stated in part (iv) of the
lemma are satisfied. Also, by the definition of fi, we have θi(m)−mi = 0 for
mi = fi(m−i). Hence part (iv) follows.

The proofs of the other parts of the lemma are very similar, and hence omitted.
Q.E.D.

Figure 7 highlights what is shown in the lemma above. Here the the horizontal
axis represents m−i and the vertical axis represents mi. The origin is the interior
steady state belief. The large dotted square is ×i=1,2[mi,mi], and recall that after
a long time, (mt

1,m
t
2) is in a neighborhood of this square almost surely. The small

dotted square is the state space ×i=1,2Θ. The thick polygonal line is the set of
points at which dθi(t)

dt = θi(m(t))−mi(t) = 0; the downward-sloping line at the
top is the graph of the function f̃i(m−i) defined in the lemma above, the upward-
sloping line in the middle is the graph of fi, and the downward-sloping line at the
bottom is the graph of f̂i. On the left side of this thick line, dθi(t)

dt = θi(m(t))−
mi(t)> 0, which means that the solution θi(t) to the ODE increases over time. In
contrast, on the right side of the line, dθi(t)

dt = θi(m(t))−mi(t)< 0, and hence θi(t)
decreases over time. See the thick arrows in the figure.

Figure 8 describes how the solution to the ODE behaves when both m1(t)
and m2(t) change over time. The horizontal axis represents m1 and the vertical
axis represents m2. The two thick polygonal lines are the set of points at which
dmi(t)

dt = 0. If the current value m(t) is on the polygonal line with dm1(t)
dt = 0,

only m2(t) changes at the next instant, so m(t) moves vertically, as shown by the
arrows in the figure. Similarly, If the current value is on the polygonal line with
dm2(t)

dt = 0, only m1(t) changes at the next instant, so m(t) moves horizontally.
For all other points, both m1 and m2 move simultaneously. We cannot pin down
the exact motion of m(t) in this case (hence we have fork arrows in the picture)
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because it depends on the current value of ξ (t), which is not specified here; in
general, when ξ1 is relatively larger than ξ2, m1 moves faster than m2, and hence
the arrow becomes flatter.

θ ′
−i

θ ′′
−iθ

θm−i

m−i

θ

θ

mi

mi

Figure 7: Motion of mi(t) for Fixed m−i

m1

m2

ṁ2(t) = 0

ṁ1(t) = 0
Figure 8: Motion of m(t)

As can be seen from the figure, the polygonal lines intersect three times, and
these are the steady states of the ODE. That is, the ODE have one interior steady
state (the origin) and two boundary steady states ((m1,m2) and (m1,m2)). From
the figure, it is easy to check that given any initial value (m,ξ ), the solution to
the ODE eventually converges to one of these steady states. However, this does
not imply that the set of steady states is globally attracting; a problem is that in
a neighborhood of the origin (the interior steady state), (dm1(t)

dt , dm2(t)
dt ) is approx-

imately (0,0), meaning that the motion of m(t) can be very slow. Accordingly,
for some initial value, it takes arbitrarily long time for the solution to reach a
neighborhood of the boundary steady state, so we cannot find a uniform bound T
appearing in the definition of attracting sets.

Nonetheless, we can show that mt converge to the boundary steady states. This
implies the result we want, as in such a case the actual belief Ñ(mt

i,
1

tξ t
i
) converges

to 1θ or 1θ .
Formally, our goal is to prove the following lemma. Let B= {(m1,m2, I, I),(m1,m2, I, I)}

denote the set of the boundary steady states. Also, let M = (×i=1,2[mi,mi])×
[I, I]2.

Lemma 7. Pick a particular path w : R → R4 such that (i) w is an asymptotic
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pseudotrajectory of the ODE, (ii) limt→∞ d(w(t),M) = 0, and (iii) limt→∞ w(t) ,
p. (Note that these properties hold with probability one, as shown by the earlier
lemmas.) Then limt→∞ d(w,B) = 0.

Proof. Pick w as stated. Since limt→∞ w(t) , p, there is ε > 0 such that for any
T > 0, there is t > T such that w(t) < (×i=1,2[m∗

i − ε,m∗
i + ε])× [I, I]2. Pick such

ε .
Now, note that the inverse function f−1

i is increasing and f−1
i (m∗

i ) = m∗
−i.

Hence we have f−1
i (m∗

i −ε)< f−1
i (m∗

i )< f−1
i (m∗

i +ε). Then there is η > 0 such
that

f−1
i (m∗

i − ε)+2η < f−1
i (m∗

i )< f−1
i (m∗

i + ε)−2η (38)

for all i. Pick such η > 0. Then let A ⊂ R4 be such that

A= {(m,ξ )∈M|min{m1−m∗
1,m2−m∗

2}≤η}∩{(m,ξ )|max{m1−m∗
1,m2−m∗

2}≥−η}.

See Figure 9.

m1

m2

Figure 9: The projection of the set A.

m1

m2

Figure 10: The projection of the set A′.

From Figure 8, given any initial value chosen from the ε-neighborhood of M,
the solution to the ODE converges to this set A. Also, the solution does not enter a
neighborhood of the origin on the way to a neighborhood of A; this means that the
solution reaches a neighborhood of A by some time T , which is independent of
the initial value. Thus the set A is attracting, and its basin is the ε-neighborhood
of M.
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Theorem 6.10 of Benaı̈m (1999) asserts that if a path w visits the basin W of
an attracting set A infinitely often and if W is compact, then w converges to the
set A. Since we assume that limt→∞ d(w(t),M) = 0, our path w indeed visits the
ε-neighborhood of M infinitely often (actually w stays there forever, after a long
time). Also ε-neighborhood of M is compact. Hence w converges to the set A,
i.e., limt→∞ d(w(t),A) = 0. This in particular implies that there is T > 0 such that
for any t > T , w(t) stays in the η-neighborhood of the set A.

At the same time, by the assumption w leaves the set (×i=1,2[m∗
i − ε,m∗

i +
ε])× [I, I]2 infinitely often. This means that w visits the set

A′ = {(m,ξ )|d((m,ξ ),A)≤ η and m <×i=1,2(m∗
i − ε,m∗

i + ε)}

infinitely often. See Figure 10.
Note that this set A′ is compact and is a basin of the set B of the boundary

steady states.34 Hence again from Theorem 6.10 of Benaı̈m (1999), w converges
to B, as desired. Q.E.D.

C.3 Proof of Proposition 4
Let (xi(θi), x̂−i(θi)) denote the one-shot Nash equilibrium (xi, x̂−i) given a state θi
and a parameter Ai. By the assumption, for the steady state belief θ2 = m∗

2, f1(θ2)
solves Q(x1(θ1), x̂2(θ1),θ1) = Q(x1(θ1),x2(θ2),θ ∗). So by the implicit function
theorem,

∂ f1

∂θ2
=

∂Q∗

∂x2

∂x2(θ2)
∂θ2

∂Q
∂x1

∂x1(θ1)
∂θ1

+ ∂Q
∂ x̂2

∂ x̂2(θ1)
∂θ1

+ ∂Q
∂θ1

− ∂Q∗

∂x1

∂x1(θ1)
∂θ1

,

where Q = Q(x1(θ1), x̂2(θ1),θ1) and Q∗ = Q(x1(θ1),x2(θ2),θ ∗).

34To see that A′ is a basin of B, pick any point (m,ξ ) ∈ A′. If (m,ξ ) is in the fourth quadrant,
we have dm1(0)

dt > 0 and dm2(0)
dt < 0, i.e., the solution m(t) to the ODE move toward the south-east

direction, and eventually converge to the boundary point (m1,m2). See Figure 8. Also the solution
does not enter the ε-neighborhood of the origin, so it reaches a neighborhood of the boundary
point by some time T which is independent of the initial value. Next, consider the case in which
(m,ξ ) is in the first quadrant. In this case we have either m1 < m∗

1 + 2η or m2 < m∗
2 + 2η , and

without loss of generality, we will focus on the case with m2 < m∗
2+2η . Then from (38), the point

(m,ξ ) is below the graph of f1 (the flatter upward-sloping line in Figure 8). Then again we have
dm1(0)

dt > 0 and dm2(0)
dt < 0, so that the solution m(t) moves toward the south-east direction and

eventually converges to the boundary point (m1,m2). A similar argument applies when (m,ξ ) is
in the second or the third quadrant. Hence A′ is indeed a basin of B.
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On the other hand, given (m1,m2), the KL minimizer θ1(m1,m2) solves Q(x1(m1), x̂2(m1),θ1)=
Q(x1(m1),x2(m2),θ ∗). So by the implicit function theorem,

∂θ1

∂m1
=−

∂Q
∂x1

∂x1(θ1)
∂θ1

+ ∂Q
∂ x̂2

∂ x̂2(θ1)
∂θ1

− ∂Q∗

∂x1

∂x1(θ1)
∂θ1

∂Q
∂θ1

.

Similarly,

∂θ1

∂m2
=

∂Q∗

∂x2

∂x2(θ2)
∂θ2

∂Q
∂θ1

.

Then simple algebra shows that

∂ f1

∂θ2
=

∂θ1

∂m2

1

1− ∂θ1
∂m1

(39)

To interpret this equation, suppose that player 2’s belief θ2 increases. Then her
optimal action x2 changes, which influences player 1’s belief (KL minimizer) by
∂θ1
∂m2

. Since player 1’s belief changes, her optimal action changes, which influences

her own belief (KL minimizer) by ∂θ1
∂m2

∂θ1
∂m1

. Then again player 1’s optimal action

changes, which influences her own belief by ∂θ1
∂m2

( ∂θ1
∂m1

)2, and so on. The total
effect of this process is

∂θ1

∂m2

{
1+

∂θ1

∂m1
+

(
∂θ1

∂m1

)2

+ · · ·

}
,

which equals the right-hand side of the above equation.
Now, recall that the eigenvalues of the matrix J′ solves(

∂θ1

∂m1
−1−λ

)(
∂θ2

∂m2
−1−λ

)
− ∂θ1

∂m2

∂θ2

∂m1
= 0,

which is equivalent to

λ 2 −
(

∂θ1

∂m1
+

∂θ2

∂m2
−2
)

λ +

(
∂θ1

∂m1
−1
)(

∂θ2

∂m2
−1
)
− ∂θ1

∂m2

∂θ2

∂m1
= 0. (40)

Part (i): ∂θi
∂mi

−1 > 0 for each i.
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Suppose that ∂θi
∂mi

−1 > 0 for each i. Then ∂θ1
∂m1

+ ∂θ2
∂m2

−2 > 0, Hence if (40) have
real solutions, at least one of them must be positive, implying linear instability.
If (40) have imaginary solutions, then the real part of these solutions is 1

2(
∂θ1
∂m1

+
∂θ2
∂m2

−2)> 0, which again implies linear instability.

Part (ii): ∂θi
∂mi

−1 < 0 for each i.

Assume first that f ′1 f ′2 > 1. Plugging (39) into f ′1 f ′2 > 1, we have

∂θ1

∂m2

1

1− ∂θ1
∂m1

∂θ2

∂m1

1

1− ∂θ2
∂m2

> 1.

Since we assume ∂θi
∂mi

−1 < 0, this inequality is equivalent to

∂θ1

∂m2

∂θ2

∂m1
>

(
1− ∂θ1

∂m1

)(
1− ∂θ2

∂m2

)
This implies that the y-intercept of the quadratic curve appearing in (40) is neg-
ative, which in turn implies that (40) has one positive solution and one negative
solution. Hence the steady state is linearly unstable.

Next, consider the case with f ′1 f ′2 < 1. Algebra similar to the one above yields

∂θ1

∂m2

∂θ2

∂m1
<

(
1− ∂θ1

∂m1

)(
1− ∂θ2

∂m2

)
,

which means that the y-intercept of the curve appearing in (40) is positive. Since
we assume ∂θi

∂mi
< 1, we have ∂θ1

∂m1
+ ∂θ2

∂m2
−2 < 0. Hence if (40) have real solutions,

they must be negative, implying asymptotic stability. If (40) have imaginary so-
lutions, then the real part of these solutions is 1

2(
∂θ1
∂m1

+ ∂θ2
∂m2

−2)< 0, which again
implies asymptotic stability.

C.4 Proof of Proposition 6
Throughout this proof, we will write fi instead of f ∗i , in order to emphasize that
f ∗i is a function. (Note that when f ∗i is a function, it coincides with the function fi
defined in Proposition 4.)

We use the tools developed in Section A. Recall that under double mis-
specification, there are two real players and two hypothetical players. Let x =
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(x1,x2, x̂1, x̂2) denote the action profile of these players, and given a sample path
h = (xt ,yt)∞

t=1, let σ t(h) ∈ △(X1 ×X2 ×X1 ×X2) denote the action frequency up
to period t. Note that this σ t(h) contains information about the past actions of the
real players and the hypothetical players.

Proposition 7 shows that after a long time, each player i’s posterior belief
will be concentrated on the KL minimizer θ t

i = θi(σ t(h)). Also Proposition 13
shows that the motion of these KL minimizers, (θ t

1,θ
t
2), is approximated by the

differential inclusion (28), which can be rewritten as the two dimensional problem(
dθ1(t)

dt
,
dθ2(t)

dt

)
∈

⋃
σ :θ(σ)=θ(t)

(
−

K′
1(θ1(t),s(θ1(t),θ2(t)))

K′′
1 (θ2(t),σ)

,−
K′

2(θ2(t),s(θ1(t),θ2(t)))
K′′

2 (θ̂1(t),σ)

)
(41)

where s(θ1,θ2) denotes a static equilibrium x = (x1,x2, x̂1, x̂2) given the beliefs
(θ1,θ2, θ̂1, θ̂2) with θ̂1 = θ2 and θ̂2 = θ1.

In what follows, we will show that regardless of the initial value, any solution
to the differential inclusion (41) converges to the steady state after a long time.
This implies that the steady state is globally attracting in the sense of Esponda,
Pouzo, and Yamamoto (2021), and their Proposition 2 ensures that θ t converges
there almost surely, as desired.

The following lemma partially characterizes the solution to the differential
inclusion (41): It shows that θ2(t) moves toward f2(θ1(t)) at any time t.

Lemma 8. Pick any initial value θ(0) = (θ1(0),θ2(0)) and any solution θ =
(θ1,θ2) to the differential inclusion (41). Then for any t ≥ 0 with θ2(t)> f2(θ1(t)),
we have θ̇2(t) < 0. Similarly, for any t ≥ 0 with θ2(t) < f2(θ1(t)), we have
θ̇2(t)> 0

Proof. We will prove only the first part of the lemma, because the proof of the
second part is symmetric. Suppose that θ2(t)> f2(θ̂1(t)) at some time t. To prove
θ̇2(t)< 0, it suffices to show that K′

2(θ2(t),s(t))> 0, where s(t) denotes the static
equilibrium s(θ1(t),θ2(t)) in time t.

Suppose not and K′
2(θ2(t),s(t))< 0. (We ignore the case with K′

2(θ2(t),s(θ1(t),θ2(t)))=
0, because in such a case, θ2(t)∈ f2(θ1(t)), which contradicts with the uniqueness
of f2(θ1(t)).) We consider the following two cases:

Case 1: θ2(t) = θ . In this case, the KL minimizer given the equilibrium s(t)
is θ2(s(t)) = θ = θ2(t) (this follows from the fact that the KL divergence K2 is
single-peaked w.r.t. θ2). Hence θ2(t) = θ is a steady state, i.e., θ2(t) ∈ f2(θ1(t)).
But this contradicts with the uniqueness of f2(θ1(t)).
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Case 2: θ2(t) < θ . An argument similar to that in Case 1 shows that at
θ2 = θ , we have K′

2(θ ,s(θ1(t),θ)) > 0. On the other hand, by the assumption,
K′

2(θ2(t),s(θ1(t),θ2(t))) < 0. Then since K′
2(θ ,s(θ1(t),θ)) is continuous in θ ,

there must be θ ∈ (θ2(t),θ) such that K′
2(θ ,s(θ1(t),θ)) = 0. This implies that

θ ∈ f2(θ1), but it contradicts with the uniqueness of f2(θ1). Q.E.D.

Now we will construct a Lyapunov function V to show that any solution to the
differential inclusion (41) converges to the steady state. Without loss of generality,
assume that the steady state is (θ ∗

1 ,θ
∗
2 ) = (0,0). From assumption (iii), there

is κ > 0 such that maxθ1 |
f2(θ1)
∂θ1

| < κ < 1
maxθ2 |

f1(θ2)
∂θ2

|
. Pick such κ , and for each

θ = (θ1,θ2), let
V (θ) = max

{
|θ2|, |κθ̂1|

}
.

We will show that given any initial value θ(0) and given any solution θ to the
differential inclusion (27),

V̇ (θ(t))< 0

for all t with θ(t) , (0,0). We will consider the following cases separately:
Case 1: |θ2(t)|> |κθ1(t)|. Assume first that θ2(t)> 0. Then by the definition

of κ and f2(0) = 0, we have f2(θ1(t)) < |κθ1(t)| < θ2(t). Then from Lemma 8
and θ2(t)> 0, we have V̇ (θ(t)) = θ̇2(t)< 0.

Assume next that θ2(t) < 0. By the definition of κ and f2(0) = 0, we have
f2(θ̂1(t)) > −|κ θ̂1(t)| > θ2(t). Then from Lemma 8 and θ2(t) < 0, we have
V̇ (θ(t)) =−θ̇2(t)< 0.

Case 2: |θ2(t)|< |κθ1(t)|. An argument similar to those for Case 1 shows that
V̇ (θ(t))< 0.

Case 3: |θ2(t)| = |κθ1(t)|. We will focus on the case with θ2(t) > 0 and
θ1(t) > 0, because a similar argument applies to all other cases. Then as in the
first half of Case 1, we have θ̇2(t) < 0. Also, a similar argument shows that
θ̇1(t)< 0. Hence we have V̇ (θ(t)) = {θ̇2(t),κ θ̇1(t)}< 0. Q.E.D.

C.5 Proof of Lemma 1
For the case in which X is finite, this is exactly the same as Lemma 1 of Esponda,
Pouzo, and Yamamoto (2021). For the case in which X is continuous, we need a
minor modification of the proof. We first prove a preliminary lemma:

Lemma 9. Assume that X is continuous. Under Assumption 1(iii) and (iv),
∫

Y g(x,y)Q(dy|x)
is bounded and continuous in x.
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Proof. Take a sequence xn converging to x. Then∫
Y

g(xn,y)Q(dy|xn)−
∫

Y
g(x,y)Q(dy|x)

≤
∣∣∣∣∫Y

g(xn,y)Q(dy|xn)−
∫

Y
g(xn,y)Q(dy|x)

∣∣∣∣
+

∣∣∣∣∫Y
g(xn,y)Q(dy|x)−

∫
Y

g(x,y)Q(dy|x)
∣∣∣∣ .

From Assumption 1(iii), Q(dy|xn) weakly converges to Q(dy|x), so the first term
of the right-hand side converges to zero. Also from Assumption 1(iv-a), g(xn,y)
pointwise converges to g(x,y), so the second term converges to zero. Q.E.D.

As shown in the display in EPY, we have

Ki,k(θ n
i,k,σ

n)−Ki(θ n
i,k,σ)≤

∫
X

∫
Y

g(x,y)Q(dy|x)σn
X̂1,1×X̂2,1

(dx)

−
∫

X

∫
Y

g(x,y)Q(dy|x)σX̂1,1×X̂2,1
(dx)

where σX̂1,1×X̂2,1
and σn

X̂1,1×X̂2,1
are the marginals of σ and σn on X̂1,1 × X̂2,1, re-

spectively. From Lemma 9, the right-hand side converges to zero as σn → σ . The
rest of the proof is exactly the same as in EPY. Q.E.D.

C.6 Proof of Proposition 7
For the special case in which X is finite, Theorem 1 of Esponda, Pouzo, and
Yamamoto (2021) proves the same result. We need a minor modification to their
proof, as they use finiteness of X in Step 2 in the proof of Lemma 2.

Pick i, k, θi,k. Then let

fl(x̂) = EQ(·|x̂1,1,x̂2,1)

 sup
θ ′

i,k∈O(θi,k,
1
l )

∣∣∣∣∣ q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
−

q(y|x̂1,1, x̂2,1)

qθ ′
i,k
(y|x̂i,k, x̂i,k+1)

∣∣∣∣∣


where O(θi,k,
1
l ) is a 1

l -neighborhood of θi,k. Then as explained at the end of the
the first paragraph in EPY’s step 2, liml→∞ fl(x̂)→ 0 for each x̂. In what follows,
we will show that this convergence is uniform in x̂; then there is δ (θi,k,ε) with
which (16) of EPY holds, and the rest of the proof is exactly the same as EPY’s.

Pick an arbitrary ε > 0. For each x̂, let F(x̂) = {l ∈ [0,∞)| fl(x̂) ≥ ε}. Then
we have the following lemma:
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Lemma 10. For each x̂, there is l(x̂) > 0 such that F(x̂) = [0, l(x̂)]. Also F(x̂) is
upper hemi-continuous in x̂.

Proof. The first part follows from the fact that fl(x̂) is continuous and decreasing
in l, and liml→∞ fl(x̂) = 0.

To prove the second part, pick x̂ and an arbitrary small η > 0. Then fl(x̂)+η(x̂)<
ε . Since fl(x̂) is continuous in x̂, there is an open neighborhood U of x̂ such
that fl(x̂)+η(x̂′) < ε for all x̂′ ∈ U . This implies that l(x̂′) < l(x̂) + η for all
x̂′ ∈U . Q.E.D.

The above lemma implies that l(x̂) is an upper hemi-continuous function, and
from the Maximum theorem, l(x̂) is bounded; l(x̂)< l∗ for some l∗. Hence fl(x̂)≤
ε for all x̂ and l ≥ l∗, implying uniform convergence. Q.E.D.

C.7 Proof of Proposition 9
This is very similar to the first step of the proof of Proposition 2 in EPY. However,
we need a minor modification, as X may not be finite in our setup. We first prove
upper hemi-continuity of Bε(σ).

Lemma 11. Bε(σ) is upper hemi-continuous in (ε,σ).

Proof. Since ∏2
i=1 ∏ki+1

k=1 △Θi,k is compact, it is sufficient to show that (εn,σn, µ̂n)→
(ε,σ , µ̂) and µ̂n ∈ Bεn(σn) for each n imply µ̂ ∈ Bε(σ). Note that

lim
n→∞

(∫
Θi,k

(Ki,k(θi,k,σn)µ̂n
i,k(dθi,k)−

∫
Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k)

)
= lim

n→∞

(∫
Θi,k

(Ki,k(θi,k,σn)µ̂n
i,k(dθi,k)−

∫
Θi,k

(Ki,k(θi,k,σ)µ̂n
i,k(dθi,k)

)
+ lim

n→∞

(∫
Θi,k

(Ki,k(θi,k,σ)µ̂n
i,k(dθi,k)−

∫
Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k)

)
.

The first term of the right-hand side is zero, because Ki,k(·,σn) pointwise con-
verges to Ki,k(·,σ) (which follows from the fact that σn weakly converges to σ ).
Also the second term of the right-hand side is zero, as µn

i,k weakly converges to
µi,k.

lim
n→∞

∫
Θi,k

(Ki,k(θi,k,σn)µ̂n
i,k(dθi,k) =

∫
Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k).
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Since µ̂n ∈ Bεn(σn),∫
Θi,k

(Ki,k(θi,k,σn)−K∗
i,k(σ

n))µ̂n
i,k(dθi,k)≤ εn.

Taking n → ∞ and using continuity of K∗
i,k(σ) (which follows from the theory of

maximum), ∫
Θi,k

(Ki,k(θi,k,σ)−K∗
i,k(σ))µ̂i,k(dθi,k)≤ ε.

Hence µ ∈ Bε(σ), which implies upper hemi-continuity of Bε(σ). Q.E.D.

Now we show that Sε(σ) is upper hemi-continuous at ε = 0. Since X is com-
pact, it suffices to show that (εn,σn,xn)→ (0,σ ,x) and xn ∈ Sεn(σn) for each n,
imply x ∈ Sε(σ). As noted earlier, we already know that S0(σ) is upper hemi-
continuous in σ . So without loss of generality, we assume εn > 0 for all n.

Since xn ∈ Sεn(σn), there is µ̂n ∈ Bεn(σn) with xn = ŝ(µ̂n). The sequence
(εn,σn,xn, µ̂n) is in a compact set, so there is a convergent subsequence, still
denoted by (εn,σn,xn, µ̂n). Let µ̂ = limn→∞ µ̂n. Then µ̂ ∈ B0(σ), as Bε(σ) is
upper hemi-continuous and µ̂n ∈ Bεn(σn) for each n. Also, we have x ∈ Ŝ(µ̂),
because Ŝ is upper hemi-continuous and xn ∈ Ŝ(µ̂n) for each n. Hence x ∈ S0(σ).

Q.E.D.

C.8 Proof of Proposition 10
The proof is very similar to that of Theorem 2 of EPY. (Their statement of the
theorem is incorrect, and we need to take the infimum over the set of all solutions
of the differential inclusion, rather than the solutions for some initial value. See
Esponda, Pouzo, and Yamamoto (2022) for details.) In EPY, the proof consists of
three steps. In the first two steps, they show that w is a perturbed solution of the
differential inclusion. Then in the last step, they show that a perturbed solution is
an asymptotic pseudotrajectory (i.e., it satisfies (26)).

Our Propositions 8 and 9 imply that w is indeed a perturbed solution in the
sense of EPY. We can also show that a perturbed solution is indeed an asymptotic
pseudotrajectory. The proof is omitted because, other than replacing the Euclidean
norm with the dual bounded-Lipschitz norm, it is exactly the same as the last step
of EPY.35 Q.E.D.

35This parallels Perkins and Leslie (2014), who show that the stochastic approximation tech-
nique of Benaı̈m (1999) for the Euclidean space extends to Banach spaces with the same proof.
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C.9 Proof of Lemma 2
We will show that θ(σ) is Lipschitz continuous in σ . Under Assumptions 4(i) and
(iii), the inverse (∇2Ki,k(θi,k(σ),σ))−1 of the Hessian matrix exists for each σ ,
and is continuous in σ . This means that ∥(∇2Ki,k(θi,k(σ),σ))−1∥ is bounded and
continuous in σ , where ∥C∥ = maxi j |ci j| denotes the max norm of a matrix C =
{ci j}, . Since △X̂ is compact, there is L1 such that ∥(∇2Ki,k(θi,k(σ),σ))−1∥< L1
for all i, k, and σ . Pick such L1.

Under Assumption 4(ii), there is L2 > 1 such that∣∣∣∣∂Ki,k(θi,k, x̂)
∂θi,k,m

−
∂K(θi,k, x̂′)

∂θi,k,m

∣∣∣∣< L2|x̂− x̂′|

for all i, k, m, θi,k, x̂, and x̂′. Also, under Assumption 4(i), there is L3 > 1 such
that ∣∣∣∣∂Ki,k(θi,k, x̂)

∂θi,k,m

∣∣∣∣< L3

for all i, k, m, θi,k, and x̂. Then for each σ and σ ′, we have∣∣∣∣∂Ki,k(θi,k,σ)

∂θi,k,m
−

∂Ki,k(θi,k,σ ′)

∂θi,k,m

∣∣∣∣
=

∣∣∣∣∫ ∂Ki,k(θi,k, x̂)
∂θi,k,m

σ(dx̂)−
∫ ∂Ki,k(θi,k, x̂)

∂θi,k,m
σ ′(dx̂)

∣∣∣∣≤ 4L2L3∥σ −σ ′∥

where the inequality follows from the definition of the dual bounded-Lipschitz
norm and the fact that 1

4L2L3

∂Ki,k(θi,k,x̂)
∂θi,k,m

∈BL(X̂). This in turn implies that ∇Ki,k(θi,k,σ)

is equi-Lipschitz continuous, that is, there is L4 > 0 such that |∇Ki,k(θi,k,σ)−
∇Ki,k(θi,k,σ ′)|< L4∥σ −σ ′∥ for all i, k, θi,k, σ , and σ ′.

Let L = L1L4. We will show that θ(σ) is Lipschitz continuous with the con-
stant L. To do so, pick two action frequencies σ and σ ′ , σ arbitrarily. For
each β ∈ [0,1], let σβ = βσ +(1−β )σ ′ denote a convex combination of σ and
σ ′. From Assumption 4(iii), the KL minimizer θi,k(σβ ) must solve the first-order
condition

∇Ki,k(θi,k,σβ ) = 0,

Our result differs from Perkins and Leslie (2014) in that we consider a differential inclusion, rather
than a differential equation. But this does not cause any technical difficulty, because (i) △X̂ is a
compact subset of a banach space with the dual bounded Lipschitz norm and (ii) Mazur’s lemma,
which is used to establish the result for differential inclusions in Euclidean spaces (Benaı̈m, Hof-
bauer, and Sorin (2005) and Esponda, Pouzo, and Yamamoto (2021)), is valid even in Banach
spaces.
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which is equivalent to

β∇Ki,k(θi,k,σ)+(1−β )∇Ki,k(θi,k,σ ′) = 0.

Then by the implicit function theorem,

dθ(σβ )

dβ
=−(∇2Ki,k(θi,k(σβ ),σβ ))

−1 (∇Ki,k(θi,k(σβ ),σ)−∇Ki,k(θi,k(σβ ),σ ′)
)
.

(42)

Using the fundamental theorem of calculus, we have

θ(σ)−θ(σ ′)

= θ(σ1)−θ(σ0)

=−
∫ 1

0
(∇2Ki,k(θi,k(σβ ),σβ ))

−1 (∇Ki,k(θi,k(σβ ),σ)−∇Ki,k(θi,k(σβ ),σ ′)
)

dβ .

Then by the definition of L1 and L4,

|θ(σ)−θ(σ̃)| ≤
∫ 1

0
L1L4∥σ −σ ′∥dβ = L∥σ −σ ′∥. Q.E.D.

C.10 Proof of Proposition 13
We will first present a preliminary lemma. Pick an arbitrary action frequency
σ(0) ∈ △X̂ and a solution σ ∈ Z(σ(0)) to the differential inclusion (26) starting
from this σ(0). Let θ(t) = θ(σ(t)) for each t. The following lemma shows that
{θ(t)}t≥0 solves (27).

Lemma 12. Pick t ≥ 0 such that (26) holds. Then θ̇(t) exists and satisfies (27).

Proof. Pick t as stated, and pick σ∗ ∈△S0(σ(t)) such that σ̇(t) = σ∗−σ(t). Let
σβ = βσ∗+(1−β )σ(t) for each β ∈ [0,1]. Then we have

θ(σ(t + ε))−θ(σ(t))
ε

=

(
θ(σε)−θ(σ0)

ε
+

θ(σ(t + ε))−θ(σε)

ε

)
.

All we need to show is that the right-hand side has a limit as ε → 0, and the limit
is in the right-hand side of (27). Then θ(σ(t+ε))−θ(σ(t))

ε also has a limit θ̇(t) and
this limit value satisfies (27).
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Note first that limε→0
θ(σε )−θ(σ0)

ε exists and is in the right-hand side of (27).
Indeed, from (42),

lim
ε→0

θ(σε)−θ(σ0)

ε
=

dθ(σβ )

dβ

∣∣∣∣
β=0

=−(∇2Ki,k(θi,k(σ0),σ0))
−1 (∇Ki,k(θi,k(σ0),σ1)−∇Ki,k(θi,k(σ0),σ0)

)
=−(∇2Ki,k(θi,k(σ(t)),σ(t)))−1 (∇Ki,k(θi,k(σ(t)),σ∗)

)
where the second equality follows from the fact that θi,k(σ0) solves the first-order
condition.

We conclude the proof by showing that limε→0
θ(σ(t+ε))−θ(σε )

ε = 0. Since
θ(σ) is Lipschitz continuous, there is L > 0 such that∣∣∣∣θ(σ(t + ε))−θ(σε)

ε

∣∣∣∣≤ L
∥∥∥∥σ(t + ε))−σε

ε

∥∥∥∥
= L

∥∥∥∥(σ(t + ε))−σ(t))− (σε −σ0)

ε

∥∥∥∥ .
Taking ε → 0,

lim
ε→0

∣∣∣∣θ(σ(t + ε))−θ(σε)

ε

∣∣∣∣= L
∥∥∥∥ lim

ε→0

σ(t + ε)−σ(t)
ε

− lim
ε→0

σε −σ0

ε

∥∥∥∥
= L

∥∥∥∥∥dσ(t)
dt

−
dσβ

dβ

∣∣∣∣
β=0

∥∥∥∥∥= 0

Q.E.D.

Now we prove the proposition. Pick T > 0 and h ∈ H arbitrary. Pick any
small ε > 0. Since θ(σ) is uniformly continuous in σ (this follows from Lipschitz
continuity of θ ), there is η > 0 such that |θ(σ)−θ(σ̃)|< ε for any σ and σ̃ with
∥σ − σ̃∥< η . From Proposition 10, there is t∗ such that for any t > t∗, there isσ∈
Z (for the special case with S0(△θ(σ)) is a singleton for all σ , σ ∈ Z(w(h)[t]))
such that

∥w(h)[t + τ]−σ(τ)∥< η

for all τ ∈ [0,T ]. Pick such σ, and consider the corresponding θ, i.e., let θ(t) =
θ(σ(t)) for each t. Then by the definition of η , we have

∥wθ (h)[t + τ]−θ(τ)∥< ε
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for all τ ∈ [0,T ]. Also this θ solves (27).36 This implies the result we want.
Q.E.D.

C.11 Proof of Proposition 14
Let N be a neighborhood of p, and choose a function η : N → R+ as in Section
3 of Pemantle (1990), given the ODE (30). Roughly, η(v) measures the distance
between a point v and (the set of) the paths pointing to the steady state p. For
example, any point v with η(v) = 0 is on such a path, so starting from this point
v, a solution to the ODE (30) converges to p.

On the other hand, any point v with η(v) > 0 is not on such a path. So the
solution to the ODE does not converge to p. Indeed, as shown by Proposition
3(v) of Pemantle (1990), we have Dv(η)(F(v)) > 0 for any v with η(v) > 0. So
a solution to the ODE moves away from the paths converging to p. (Here, the
notation for multidimensional derivatives uses Dv(η) for the differential of η at a
point v.)

Let St = η(v(t)) and Xt = St −St−1. Lemma 1 of Pemantle (1990) shows that
after every history Ft , the stochastic process {Sk} can exceed c∗√

t (i.e., v(t) leaves
a neighborhood of the paths converging to p) at some point in the future with
probability at least 0.5. The following lemma shows that the same result holds in
our setup. The proof can be found in Section C.12

Lemma 13. There is a constant c∗ > 0 and t∗ such that for any t > t∗ and Ft ,

Pr
(

sup
k>t

Sk >
c∗√

t
or v(k) <N for some k > t

∣∣∣∣Ft

)
> 0.5.

Lemma 2 of Pemantle (1990) shows that once the process {v(t)} leaves a c∗√
t -

neighborhood of p as stated in the lemma above, then it fails to return to p with
positive probability. The proof can be found in Section C.13

Lemma 14. Let c∗ > 0 be as in Lemma 13. Then there is a > 0 such that

Pr
(

inf
k>t

Sk >
c∗

2
√

t
or v(k) <N for some k ≥ t

∣∣∣∣Ft ,St ≥
c∗√

t

)
≥ a.

36Note that θ is absolutely continuous because σ is absolutely continuous and θ(σ) is Lipschitz
continuous. Also from Lemma 12, θ satisfies (27) for almost all t.
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The rest of the proof is exactly the same as the argument in the full paragraph
on page 711 of Pemantle (1990): Suppose that Pr(v(t) → p) > 0. Then there is
some history Ft after which the probability that v(M) converges to p and never
leaves the neighborhood N is at least 1− a

2 . However, Lemmas 13 and 14 imply
that the probability that v(M) fails to converge to p or leaves N is at least a

2
conditional on any history Ft . This is a contradiction.

C.12 Proof of Lemma 13
Without loss of generality, assume that N (the domain of the “distance function”
η) is a closed ball surrounding p. (This is so because given a neighborhood U of
the point p, we can always find a closed ball N ⊆U containing p.) Then enlarge
the domain of η by letting η(v) = η(argmaxṽ∈N d(ṽ,N )) for each v <N . Here
d(v,N ) measures the Euclidean distance between v and the ball N . This function
η is well-defined because N is a closed ball. Since η is Lipschitz in N , it is so
in the entire space Rn.

Pick a sufficiently large t, and define a stopping time τ = {M ≥ t|SM > c∗√
t }.

We will show that Pr(τ = ∞|Ft)< 0.5.

Step 1: Inequalities (12) and (14) of Pemantle (1990).

In the proof Pemantle (1990), he shows that there is k2 > 0 such that for any
M > t with SM ≤ c∗√

t ,

E[2XM+1SM|FM]≥ k2S2
M

M+1
+O

(
SM

M2

)
, (43)

E[X2
M+1|FM] is at least

const.
M2 . (44)

See (12) and (14) of Pemantle (1990). His proof relies on the assumption that the
noise term has a bounded support (and hence the step size is of order 1

t+1 ). We
will show that the same result holds in our setup where the noise is Gaussian.
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Note that for any v, ṽ ∈ Rn and sufficiently large M,

E
[

η
(

v+
b(M, ṽ)ε

M+1

)∣∣∣∣FM

]
= E[η(v+ zb(M, ṽ)ε)], where z = 1

M+1

= η(v)+
∂E[η(v+ zb(M, ṽ)ε)]

∂ z

∣∣∣∣
z=0

z+O(z2)

= η(v)+
n

∑
i=1

∂η(v)
∂vi

bi(M, ṽ)E[ε]z+O(z2)

= η(v)+O(z2)

= η(v)+O
(

1
M2

)
To obtain the second equation, we regard the whole term as a function of z and
apply Taylor expansion at z= 0. Intuitively, this shows that the impact of the noise
ε in period M on the expected value of η(v(M+1)) is of order O( 1

M2 ). Then we
have

E[SM+1|FM]

= E
[

η
(

v(M)+
1

M+1
(
F̃(t,v(M))+b(M,v(M))ε

))∣∣∣∣FM

]
= η

(
v(M)+

F̃(t,v(M))

M+1

)
+O

(
1

M2

)
= η

(
v(M)+

F(v(M))

M+1

)
+O

(
1

M2

)
≥ k2SM

M+1
+O

(
1

M2

)
,

which immediately implies (43). Here the third equation follows from the Lips-
chitz continuity of η , and |F(v)− F̃(M,v)|< K

M . The last inequality follows from
Proposition 3(iv) of Pemantle (1990).

To obtain (44), note that

E[X2
M+1|FM] = (E[X+

M+1|FM])2

≥ (Pr(|ε(M)|< 1|FM)E[X+
M+1|FM, |ε(M)|< 1])2.
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Conditional on |ε(M)|< 1, the step size v(M+1)−v(M) is of order 1
M+1 . Hence

as in the first display on page 709 of Pemantle (1990), we have

E[X+
M+1|FM, |ε(M)|< 1]

≥ E

[(
Dv(M)(η)

(
F̃(M,v(M))+b(M,v(M))ε

M+1

)
+O(|v(M+1)− v(M)|2)

)+
∣∣∣∣∣FM, |ε(M)|< 1

]

= E

[(
Dv(M)(η)

(
F(v(M))+b(M,v(M))ε

M+1

)
+O

(
1

M2

))+
∣∣∣∣∣FM, |ε(M)|< 1

]

≥ E

[(
Dv(M)(η)

(
b(M,v(M))ε

M+1

)
+O

(
1

M2

))+
∣∣∣∣∣FM, |ε(M)|< 1

]

≥ const.
M+1

+O
(

1
M2

)
Here the equality follows from linearity of Dv(η), |F(v)− F̃(M,v)|< K

M , and the
fact that the step size v(M + 1)− v(M) is of order 1

M+1 . The second to the last
inequality follows from Proposition 3(v) of Pemantle (1990). The last inequality
uses the fact that the gradient of η at p is c′h for some c′ > 0 and h ∈ H∗, which
implies Dv(η)(b(M,v(M)))≥ c′κ for any v(M) in a neighborhood of p.

Substituting this inequality to the previous one, we obtain (44).

Step 2: Main Proof.

As argued in the full paragraph on page 709 of Pemantle (1990), combining
(43) and (44) yields

E[2XM+1SM +X2
M+1|FM]≥ const.

M2 ,

which in turn implies

E[S2
τ∧(M+1)|Ft ]−E[S2

τ∧M|Ft ] = E[1τ>M(2XM+1SM +X2
M+1)|Ft ]

= E[E[1τ>M(2XM+1SM +X2
M+1)|FM]|Ft ]

≥ const.
M2 E[1τ>M|Ft ]

≥ const.
M2 Pr(τ = ∞|Ft)
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for M > t. Pemantle (1990) applies this inequality iteratively and obtains

E[S2
τ∧M|Ft ]≥ S2

t + const. ·Pr(τ = ∞|Ft)
M−1

∑
i=t

1
i2

≥ const. ·Pr(τ = ∞|Ft)

(
1
t
− 1

M

)
. (45)

Then in the first paragraph on page 710, Pemantle (1990) shows that

4(c∗)2

t
≥ E(S2

M∧τ |Ft), (46)

using the assumption that the noise has a bounded support (which ensures that the
step size is of order 1

M+1 ). We can show that the same result holds in our setup,
the proof can be found at the end.

Then the rest of the proof is the same as Pemantle (1990): Combining (45)
and (46),

4(c∗)2

t
≥ const. ·Pr(τ = ∞|Ft)

(
1
t
− 1

M

)
.

This inequality holds for all M, and when M → ∞, it reduces to

4(c∗)2 ≥ const. ·Pr(τ = ∞|Ft).

By taking c∗ small enough, we have Pr(τ = ∞|Ft)≤ 0.5, as desired.

Step 3: Proof of (46).

We will show that (46) holds in our setup: Let L > 0 be the Lipschitz constant
of η , and ĉ > 0 be such that |F̃(M,v)− v| < ĉ for all M > t and for all v in a
neighborhood of p. Then

|SM∧τ −S(M∧τ)−1)|< L|v(M∧ τ)− v((M∧ τ)−1)|

≤ ĉL+nb|ε|L
M∧ τ

≤ ĉL+nb|ε|L
t

. (47)
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whenever v(M) is in the neighborhood of p. Since the mean of the half-normal
distribution is

√
2√
π and its variance is 1− 2

π , we have

E[|SM∧τ −S(M∧τ)−1||Ft ]<
const.

t
,

E[(SM∧τ −S(M∧τ)−1)
2|Ft ]<

const.
t2 .

Then we have

E[S2
M∧τ |Ft ] = E[{S(M∧τ)−1 +(SM∧τ −S(M∧τ)−1)}2|Ft ]

≤
(

c∗√
t

)2

+2
c∗√

t
const.

t
+

const.
t2

where the inequality uses S(M∧τ)−1 ≤ c∗√
t (which follows from the definition of τ),

the Lipschitz-continuity of η , and the previous inequalities. When t is large, the
last line is less than 4(c∗)2

t , and hence (46) follows.

C.13 Proof of Lemma 14
The proof is almost the same as that of Pemantle (1990). However, at some places,
his proof uses the assumption that the noise has a bounded support (which ensures
that the step size of the process is of order 1

t+1 ). In what follows, we will explain
how to extend his argument to our setup with Gaussian noise.

Enlarge the domain of η as in the proof of Lemma 13. Pick t large enough,
and assume that St ≥ c∗√

t . Let τ = inf{k ≥ t|Sk ≤ c∗
2
√

t }. Recall that Xk = Sk −Sk−1

is a difference sequence. Let µk = E[Xk|Fk−1]. Consider a martingale {Zk}∞
k=t

defined as Zk = St +∑k
j=t+1Yj, where Yk = 0 for τ > k and Yk = Xk −µk for τ ≤ k.

In the seventh to the last line on page 710, Pemantle (1990) argues that if
the step size is of order 1

k , then {Zk} is L2-bounded (and hence the martingale
convergence theorem applies).

In our setup, we can still prove that {Zk} is L2-bounded. It is well-known that
a martingale {Zk} is L2-bounded if and only if

∑
k

E[(Zk −Zk−1)
2]< ∞.

We will show that this inequality holds in our model. Using the argument similar
to (47), we have

|Sk −Sk−1|<
ĉL+nb|ε|L

k
, (48)
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and hence

E[(Sk −Sk−1)
2|Fk−1]<

const.
k2 ,

E[|Sk −Sk−1||Fk−1]<
const.

k
.

These inequalities imply

E[(Zk −Zk−1)
2|Fk−1]

≤ E[(Xk −µk)
2|Fk−1]

= E[(Sk −Sk−1)
2 −2µk(Sk −Sk−1)+µ2

k |Fk−1]

= E[(Sk −Sk−1)
2 −2E[Sk −Sk−1|Fk−1](Sk −Sk−1)+(E[Sk −Sk−1|Fk−1])

2|Fk−1]

<
const.

k2 .

Hence we have E[(Zk −Zk−1)
2] < const.

k2 for every k. Then obviously ∑k E[(Zk −
Zk−1)

2]< ∞, as desired.
Also in the last line on page 710, Pemantle (1990) shows that if the step size

is of order 1
k , then

Var

(
τ

∑
k=t+1

Yk

)
≤

∞

∑
k=t+1

const.
k2 ,

In our model, we can still prove the same inequality. It is well-known that the
covariance of the martingale difference (Yi,Yj) is zero, and hence

Var

(
τ

∑
k=t+1

Yk

)
= Var

(
∞

∑
k=t+1

Yk

)

=
∞

∑
k=t+1

Var(Yk).

We have seen that E[(Zk −Zk−1)
2]< const.

k2 . Since Var(Yk) = E[(Zk −Zk−1)
2], the

desired inequality holds.
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