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1 Introduction

After the seminal work by Holmstrom and Milgrom (1991), multitasking problems have been one of

the most important topics in contract theory and organizational economics, as well as many other

fields.1 In a standard multitasking model, an agent is responsible for multiple tasks, some of which

are not easy to monitor and reward (called “non-contractible tasks”). One of the main results is that

when the tasks are substitutes or effort costs are complements, a principal prefers to provide a lower-

powered incentive for a task which outcome is verifiable (called a “contractible task”) compared

to a case in which the agent works only on the contractible task. However, even when some tasks

are non-contractible, the effort spent on the task can be observed by other agents (e.g., helping

colleagues or working while on vacation). In addition, the value of such a non-contractible task is

often uncertain, and some agents know more about it than other agents (e.g., senior employees know

more about the importance of non-contractible work than junior employees do, or a salesperson

who directly meets customers knows more about their demand than administrative officers).

This study builds a multitasking model in which an agent’s effort can signal the non-contractible

task’s value to others. We highlight a new rationale that, for an agent to work harder on a non-

contractible task, a principal may prefer to provide higher-powered incentives to a contractible task.

Because the signaling game between agents (leading-by-example by Hermalin, 1998) is embedded

in the multitasking model, the principal can indirectly control the incentives for agents to work

on the non-contractible task by designing a payment scheme for the contractible task. We derive

the condition in which the principal offers higher-powered incentives to a contractible task, in

contrast to the result of the standard multitasking model (with no signaling). The results have

implications to pay for performance, incentives to help other agents, and the prevention of overwork

in multitasking situations.

In this model, the agent engages in two substitute tasks simultaneously. The principal can

verify the performance of one task, while she cannot write any contract with regard to the other

task. A key element in our model is that the agent has private information on the value of the

non-contractible task (either high or low), and there is a follower (e.g., another agent, third party,

1 For example, 2016 Scientific Background on the Prize in Economic Sciences in Memory of Alfred Nobel
features three extensions of the basic moral-hazard model as highly influential and important: the multitasking
model, incentives in teams, and career concerns. https://www.nobelprize.org/prizes/economic-sciences/2016/

press-release/ (accessed October 19, 2022).
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or principal) who can also contribute to the non-verifiable task after observing the agent’s ac-

tion. In this setting, the agent and follower play a signaling game concerning the value of the

non-contractible task. The signaling role of the agent’s effort can be interpreted as “leading-by-

example” studied by Hermalin (1998). The signaling effect has significant implications on the

optimal incentive contracts the principal offers: the optimal contract may specify a high-powered

incentive to the contractible task to suppress the agent’s excessive effort on the non-contractible

task. Intuitively, by providing a sufficiently high bonus to the contractible task, the agent does

not work hard on the non-contractible task if its value is low. Hence, under the high-powered

incentive to the contractible task, working hard on the non-contractible task becomes a credible

signal with regard to the value of the non-contractible task. If this effect is sufficiently important

for the principal, she provides a high-powered incentive to the contractible task (with a low fixed

wage).2 The difference between the optimal contract in our model and the one in the standard

multitasking model can be substantial: The bonus upon the success of the contractible task may

exceed the highest possible revenue from the contractible task.

These results have implications for managerial incentives in organizations. For example, suppose

that a salesperson engages in both the main sales activity and other informal activities (e.g.,

participating in events in the community of a sales territory). Unlike the main sales activity,

the informal activities do not directly contribute to sales performance, but they might affect the

company’s overall performance. Only the salesperson knows how each informal activity contributes

to overall performance. Even if an informal activity is worthwhile, the company’s support is

necessary to succeed. Hence, if the salesperson knows that the informal activity contributes to

overall performance, the company should support it. On the other hand, if the salesperson indulges

in the informal activity just for fun (e.g., to host parties), the company should not support it. To

alleviate inefficiencies from information asymmetry, it may be optimal for the company to provide

a high bonus for the main sales activity (with low fixed payment), which suppresses excessive effort

in the informal activity by the salesperson who knows that the informal activity is not worthwhile.

Related literature. This paper relates mainly to two literatures: multitasking and leadership.3

In the literature on multitasking initiated by Holmstrom and Milgrom (1991), our study is mainly

2 We use female pronouns to refer to a principal and male pronouns to refer to an agent.
3 We will introduce other related studies in section 5 which provides some possible applications.
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related to those in which some agents have private information. Bénabou and Tirole (2016) inves-

tigate the impact of labor-market competition on contracts in a Hotelling model, in which both

multitasking and screening problems matter. They show that competition for unobservable talents

causes high-powered incentives for the task easily measured, which leads to distorted decisions

and efficiency losses. Although they mainly focus on private information about the quality of a

contractible task, they also highlight private information about the quality of a non-contractible

task (called “ethical motivation”) as an alternative setting. However, in this setting, they focus on

screening and show that the first-best outcome could be achieved under perfect labor-market com-

petition. Kosfeld and von Siemens (2011) study multitasking problems with worker heterogeneity

regarding social preferences. They show that firms employing “conditionally cooperative” workers

moght make strictly positive profits even in a competitive labor market due to adverse selection

of the workers and discuss its implications for different corporate cultures. While these studies

focus on adverse selection and labor market competition, we shed light on the signaling role in

the standard multitasking setting. We show that the principal may offer a high-powered incentive

with a lower fixed wage relative to the symmetric information situation because the high-powered

incentive improves the credibility of the signal for the value of the non-contractible task. By this

mechanism, the bonus on the contractible task may exceed the highest possible revenue from the

contractible task.4

Our signaling effect is closely related to the literature on the economics of leadership. Specifi-

cally, Hermalin (1998) and the following literature on leading-by-example investigate how an action

taken by a leader agent can credibly convey the agent’s private information about the value of a

task to the following agents. Hermalin (1998) studies a team-production problem and shows that

the sequence of moves may improve team performance and enhance efficiency because the leader’s

action serves as a signal of the value of the task.5 While Hermalin (1998) assumes that an agent’s

action fully conveys the true value, Komai et al. (2007) extend Hermalin (1998) to state that the

leader’s action partially informs the value. They show that efficiency can be improved under partial

4 Sinclair-Desgagné (1999) shows how selective auditing can lead to high-powered incentives under multitasking.
Our model features a different mechanism and also provides additional insights, e.g., when the bonus upon the success
on the contractible task exceeds the highest benefit of the contractible task.

5 Kobayashi and Suehiro (2005) and Huck and Rey-Biel (2006) study how leadership can arise endogenously in
leading-by-example models. Costa (2014) provides historical evidence on leading-by-example. Vesterlund (2003)and
Andreoni (2006) investigate dynamic public-good provision problems with a focus on leading-by-example. For the
review on the economics of leadership, see Hermalin (2012).
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information. Komai and Stegeman (2010) analyze the above team-production model by incorpo-

rating coordination problems, and highlight a new trade-off between shirking and coordination.

Komai and Stegeman (2010) also study the problem of choosing an optimal leader by assuming

heterogeneous agents. Zhou (2016) studies leadership in a hierarchical structure and optimal or-

ganizational structure endogenously. To the best of our knowledge, however, previous studies on

leading-by-example have not investigated the implications of performance-based payment scheme.

We analyze optimal performance-based payment schemes in the presence of leading-by-example by

focusing on multitasking situations, highlighting the new mechanism and implications discussed

above.

Organization of the paper. This remainder of this article is organized as follows. Section 2

sets up our model. Section 3 illustrates our result with a binary action space. Section 4 analyzes

the optimal contract and discusses its implications with providing an example. Section 5 covers

applications of our model to CEO payments, incentives to help other agents, and overwork. Section

6 concludes. All proofs are in Appendix.

2 Setup

There are three parties: a principal (P ), an agent (A), and a follower (F ).6 When the principal

hires the agent, the agent can make non-verifiable efforts on two tasks (n = 1, 2). The outcome of

task 1 is verifiable and solely depends on the agent’s effort. Following the standard multitasking

framework, we focus on a situation in which the principal cannot write any contract with regard

to the other task (task 2). The outcome of task 2 depends both on the agent’s effort and on the

decision made by the follower after observing the agent’s effort in task 2.

At the beginning, the principal offers the agent a contract (w, b), where w is an unconditional

fixed payment and b is a bonus upon success in task 1. If the agent rejects the contract, then he

receives the outside option ū ∈ R. If the agent accepts the contract, he exerts effort en ∈ R+ for

n = 1, 2. Let e = (e1, e2) denote the agent’s effort profile.7 Task 1 succeeds with probability q(e1)

and fails with probability 1 − q(e1) where q(e1) ∈ [0, 1) for all e1 ∈ R+. q(·) is strictly increasing,

6 Throughout the analysis, we assume that there are three different parties. However, the follower may not
necessary be a third party. For example, the principal can also serve the role of the follower.

7 Section 3 analyzes the illustrative case in which the agent’s effort choice is binary.
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twice continuously differentiable, and lime1→0 q
′(e1) = +∞. When task 1 succeeds, the principal

receives V > 0; otherwise, she receives 0 from task 1.

The agent has private information on the value of task 2, denoted by θ ∈ {θ, θ} with 0 < θ < θ

and ∆θ ≡ θ − θ. There is a common prior belief that θ = θ with probability µ ∈ (0, 1). Denote by

E(θ) = µθ+ (1−µ)θ and ∆θ = θ− θ. When the agent takes up the contract, he privately observes

the true value of θ. Because the follower cannot observe θ, the follower infers the value of θ by

observing the agent’s effort for task 2. The decision of the follower is denoted by d ∈ R+.

The payoff from task 2 for each player i (i = P,A, F ) is (xie2 + yid)θ, where xi, yi ≥ 0 and

xA, yA > 0. The agent’s effort cost for (e1, e2) is cA(e1, e2), where cA(e1, e2) is strictly increasing,

twice continuously differentiable, strictly convex in (e1, e2), and ∂2cA(e1,e2)
∂e1∂e2

> 0. The follower’s

effort cost is cF (d), where cF (0) = c′F (0) = 0, cF (·) is strictly increasing, strictly convex, twice

continuously differentiable, and limd→∞ c
′
F (d) = ∞. We assume that for any fixed d ≥ 0 and

b > 0, the agent’s optimal effort choice (e1, e2) is unique, interior, and satisfies the second-order

condition.8

The timing is summarized as follows:

1. The principal offers a contract (w, b) to the agent.

2. The agent decides whether or not to accept the contract.

3. The agent receives a signal about θ.

4. The agent chooses e = (e1, e2).

5. The follower observes e2 and then makes a decision d.

6. The outputs are realized and payments are executed.

Note that the agent’s action depends on θ and the follower’s action depends on e2. Let eθ = (eθ1, e
θ
2)

be the action profile for the agent with type θ. Let Ie2 be the information set in which the follower

who observed e2 makes a decision. Let µe2 = Prob{θ = θ|e2} be the follower’s posterior belief

8 Specifically, we assume q′′(e1)b− ∂2cA(e1,e2)

∂e21
< 0 and −

(
q′′(e1)b− ∂2cA(e1,e2)

∂e21

)
∂2cA(e1,e2)

∂e22
−

(
∂2cA(e1,e2)
∂e1∂e2

)2

> 0

for the second-order condition. A sufficient condition for the unique and interior effort choice is that xA > 0, q′′(·) ≤ 0,

and ∂cA(e1,e2)
∂e1

|e1=0= ∂cA(e1,e2)
∂e2

|e2=0= 0.
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on θ after observing e2.
9 Let d(µe2) be the decision of the follower who holds the posterior belief

µe2 . For continuation games played between the agent and follower, we adopt perfect-Bayesian

equilibria (PBE).

3 Illustration with Binary Effort

This section illustrates a simple case in which each party’s effort choice is binary: e ∈ {(1, 0), (0, 1)},

d ∈ {0, 1}, task 1 succeeds with probability q(1) = q ∈ (0, 1) and q(0) = 0, the agent’s effort cost is

cA = 0, and the follower’s effort cost is cF · d with cF > 0.10 To focus on the most interesting case,

we make the following assumptions throughout this section:

Assumption 1. (i) qV > u, (ii) yFE(θ) < cF < yF θ, (iii) xAθ < (xA + yA)θ.

Assumption 1 (i) states that working on task 1 yields a positive social surplus. Assumption 1 (ii)

implies that the follower does not prefer to work on task 2 if there is no information. Assumption 1

(iii) is to focus on our most interesting case in which the agent’s payoff on task 2 crucially depends

on the follower’s decision. In the rest of this section, we analyze the case where the principal sets

the lowest bonus by which her intended equilibrium is played.11 For continuation games played

between the agent and the follower, we focus on a pure-strategy PBE whenever it exists.

We first illustrate optimal contracts in the benchmark case where there is no asymmetric infor-

mation; all parties observe θ when the agent observes it. Let (w∗, b∗) denote the optimal contract

for this benchmark case. In this case, the follower chooses d = 1 if and only if θ = θ regardless of

the agent’s effort. Also, the type-θ agent chooses (1, 0) if and only if qb ≥ xAθ. Given the above

actions, the optimal bonus level is either b∗ = xAθ
q (when the principal prefers both types of agent

to work on task 1), b∗ = xAθ
q (when the principal prefers only the type-θ agent to work on task 1),

or b∗ = 0 (when the principal prefers both types of agent to work on task 2). Hence, the highest

possible bonus level in this benchmark case is b∗ = xAθ
q .

9 For simplicity, we assume that the follower observes e2 but not e1. All our results remain qualitatively the same
if the follower can observe both e1 and e2.

10 In this setup, none of the following results changes when e = (0, 0) is included in the agent’s effort choice. This
is because e = (0, 0) never constitutes the optimal contract under cA = 0.

11 Under binary effort and linear utility, multiple optimal contracts exist under certain parameters. As we show in
section 4, the optimal contract becomes unique under continuous effort. Alternatively, if we incorporate the agent’s
risk aversion into the binary model, the optimal contract will be uniquely pinned down to the specified one.
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In the following, we demonstrate that the principal may set a bonus strictly higher than xAθ
q

when θ is the private information of the agent. After observing the principal’s offer (w, b), there

are three pure-strategy PBE played by the agent and follower, which depend on the values of b.12

First, there exists a separating equilibrium in which the type-θ agent works on task 2 and the

type-θ agent works on task 1 if (xA+yA)θ
q ≤ b ≤ (xA+yA)θ

q . In this equilibrium, the follower works

on task 2 if and only if the agent exerts effort on task 2. Second, a pooling equilibrium exists in

which both types of the agent work on task 1 if b ≥ xAθ
q .13 Third, there is a pooling equilibrium in

which both types of the agent work on task 2 if b ≤ xAθ
q . In both pooling equilibria, the follower

never works on task 2 on the equilibrium path by Assumption 1 (ii).

We now derive the conditions under which the principal offers higher-powered incentives than the

benchmark cases. Let (w∗∗, b∗∗) denote the optimal contract in the case of asymmetric information.

By Assumption 1 (i), the principal prefers the agent to accept a contract. Under the optimal

contract, the agent’s individual rationality constraint is binding. There are three possible cases.

First, given that both types of the agent work on task 1, the optimal contract is (w∗∗, b∗∗) =(
u− xAθ, xAθq

)
and the principal’s payoff is πpool−1 = qV − u. Second, given that both types of

the agent work on task 2, the optimal contract is (w∗∗, b∗∗) = (u− xAE(θ), 0) and the principal’s

payoff is πpool−2 = (xP + xA)E(θ)− u. Third, given that the type-θ agent works on task 2 and the

type-θ agent works on task 1, the optimal contract is (w∗∗, b∗∗) =
(
u− (xA + yA)E(θ), (xA+yA)θq

)
and the principal’s payoff is πsep = µ(xP + xA + yP + yA)θ + (1− µ)qV − u.

We derive the following proposition by comparing among the principal’s payoffs in these three

cases.

Proposition 1. Suppose Assumption 1 holds. Then, the optimal contract is

(w∗∗, b∗∗) =
(
u− (xA + yA)E(θ), (xA+yA)θq

)
if and only if the following condition holds:

(xP + xA)θ − µ

1− µ
(yP + yA)θ < qV < (xP + xA + yP + yA)θ. (1)

12 For some values of b, a pure-strategy PBE does not exist; hence a mixed-strategy PBE is played. In the proof of
Proposition 1, we show that such mixed-strategy PBE is never implemented in the optimal contract. Furthermore, in
the Supplementary Material, we derive all the PBE (including mixed strategies) and show that the optimal contract
stated in Proposition 1 remains the same.

13 If we impose the Intuitive Criterion (Cho and Kreps, 1987), then a pooling equilibrium in which both types

of the agent working on task 1 fails to survive for (xA+yA)θ
q

< b < (xA+yA)θ
q

. However, note that the lowest bonus

in this pooling equilibrium, which survives the Intuitive Criterion, is still b = xAθ
q

by Assumption 1 (iii). A full
characterization by imposing the Intuitive Criterion is presented in the Supplementary Material.
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Proposition 1 characterizes the condition in which the optimal contract is supported by the separat-

ing equilibrium. From Assumption 1 (iii), b∗∗ = (xA+yA)θ
q is strictly higher than xAθ

q ; the principal

offers a strictly higher bonus level than the benchmark case. Intuitively, by providing a sufficiently

high bonus to task 1 so that the agent never works on task 2 if the value of task 2 is low, the

principal can credibly infer the value of the task 2. The following comparative statics holds. First,

Condition (1) is more likely to be satisfied as θ is higher. Second, Condition (1) is more likely to

be satisfied as the benefit from the follower’s support for task 2 (i.e., yP or yA) increases. Third,

Condition (1) is more likely to be satisfied as the likelihood of θ (i.e., µ) increases.

The signaling game between the agent and the follower can be viewed as a model of “leadership”

by Hermalin (1998) and the following literature. In our model, the principal facing a multitasking

problem attempts to take advantage of the agent’s leadership. The type-θ agent increases his effort

level, which is a credible signal to make the follower support task 2. Our multitasking model

— which embeds a signaling game — shows that the principal needs to provide a high-powered

incentive for task 1 to prevent the type-θ agent from pretending to be the type-θ agent. As a result,

the principal can save the fixed wage payment and increase her expected payoff. We examine this

mechanism in detail in the next continuous-effort model.

4 Analysis

This section analyzes the model with continuous effort choices and derives its implications. Section

4.1 presents a benchmark case with symmetric information. Section 4.2 characterizes the PBE

played between the agent and follower. Section 4.3 analyzes the optimal contract and provide an

example.

4.1 Benchmark Result

In this subsection, we analyze a benchmark case with symmetric information. Suppose that all

parties observe θ when the agent observes it.

We first characterize the actions of the follower and agent. Suppose that contract (w, b) is

accepted. The follower maximizes yFdθ − cF (d) and hence chooses d∗ such that yF θ = c′F (d∗).

For consistency of notation with the analysis in the main model with private information, let d∗(1)

denote the follower’s action when θ = θ and d∗(0) denote the follower’s action when θ = θ.

9



Anticipating the follower’s action, an agent with type θ maximizes q(e1)b + [xAe2 + yAd
∗]θ −

cA(e1, e2). In this benchmark case, the agent with type θ chooses (eθ∗1 , e
θ∗
2 ) such that

q′(eθ∗1 )b− ∂cA(eθ∗1 , e
θ∗
2 )

∂e1
= 0, (2)

xAθ −
∂cA(eθ∗1 , e

θ∗
2 )

∂e2
= 0. (3)

In the proof of Proposition 2, we show that
∂eθ∗1
∂b > 0 and

∂eθ∗2
∂b < 0.

Next, we derive the optimal contract. Let (w∗, b∗) denote the optimal contract for this bench-

mark case. In the optimal contract, the agent’s individual rationality constraint binds (otherwise,

the principal can reduce w∗):

w = ū−µ[q(eθ∗1 )b+(xAe
θ∗
2 +yAd(1))θ−cA(eθ∗1 , e

θ∗
2 )]−(1−µ)[q(e

θ∗
1 )b+(xAe

θ∗
2 +yAd(0))θ−cA(e

θ∗
1 , e

θ∗
2 )].

Then, the principal’s profits are

Π =µ
{
q(eθ∗1 )(V − b) + [xP e

θ∗
2 + yPd(1)]θ

}
+ (1− µ)

{
q(e

θ∗
1 )(V − b) + [xP e

θ∗
2 + yPd(0)]θ

}
− w

=µ
{
q(eθ∗1 )V + [(xP + xA)eθ∗2 + (yP + yA)d(1)]θ − cA(eθ∗1 , e

θ∗
2 )
}

+ (1− µ)
{
q(e

θ∗
1 )V + [(xP + xA)e

θ∗
2 + (yP + yA)d(0)]θ − cA(e

θ∗
1 , e

θ∗
2 )
}
− ū, (4)

Proposition 2 provides the optimal level of bonus in the benchmark case:

Proposition 2 (Symmetric Information). Suppose all parties observe θ. Then, the optimal con-

tract (w∗, b∗) specifies

b∗ = V +

xP

<0︷ ︸︸ ︷[
µ
∂eθ∗2
∂b

θ + (1− µ)
∂e

θ∗
2

∂b
θ

]

µ
∂eθ∗1
∂b

q′(eθ∗1 ) + (1− µ)
∂e

θ∗
1

∂b
q′(e

θ∗
1 )︸ ︷︷ ︸

>0

. (5)

In particular, b∗ ≤ V holds strict inequality when xP > 0.

The intuition behind Proposition 2 is akin to Holmstrom and Milgrom (1991): when effort costs

are complements, the principal sets a low incentive for a contractible task.14

14 As another benchmark case, if there is no benefit from the follower’s decision (i.e., yi = 0 for i = P,A), then the
optimal contract is the same as that specified in Proposition 2.
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4.2 Perfect-Bayesian Equilibria played by the Agent and the Follower

We now analyze the main model where θ is the agent’s private information. This subsection analyzes

the continuation games played by the agent and follower after observing the principal’s offer (w, b).

We adopt perfect-Bayesian equilibria that satisfy the Intuitive Criterion (Cho and Kreps, 1987).

Follower’s Best Responses Given the follower’s belief µe2 ∈ [0, 1], the follower maximizes

[µe2θ+ (1−µe2)θ]yFd− cF (d). Hence, the follower chooses d(µe2) such that [µe2θ+ (1−µe2)θ]yF =

c′F (d(µe2)). By the assumption of cF (·), d(µe2) is unique and strictly increasing in µe2 .

Perfect-Bayesian equilibria Given µe2 and b, an agent with type θ maximizes q(e1)b+ [xAe2 +

yAd(µe2)]θ − cA(e1, e2). Let eθ∗∗i denote the equilibrium action of the type-θ agent in task i. In

what follows, we derive a separating equilibrium by restricting the off-path belief that the follower

always thinks that a deviating agent must be the low type: µe2 = 0 for any e2 6= eθ∗∗2 .

Then, the type-θ agent’s action profile must satisfy the following conditions:

q′(e
θ∗∗
1 )b− ∂cA(e

θ∗∗
1 , e

θ∗∗
2 )

∂e1
= 0, (6)

xAθ −
∂cA(e

θ∗∗
1 , e

θ∗∗
2 )

∂e2
= 0, (7)

q(e
θ∗∗
1 )b+ [xAe

θ∗∗
2 + yAd(0)]θ − cA(e

θ∗∗
1 , e

θ∗∗
2 ) ≥ max

e1

{
q(e1)b+ [xAe

θ∗∗
2 + yAd(1)]θ − cA(e1, e

θ∗∗
2 )

}
.

(8)

(6) and (7) are conditions in which the type-θ agent takes his best responses for e2 6= eθ∗∗2 . (8)

means that the type-θ agent does not mimic the type-θ agent by choosing eθ∗∗2 .

The type-θ agent’s action profile must satisfy the following conditions:

q′(eθ∗∗1 )b− ∂cA(eθ∗∗1 , eθ∗∗2 )

∂e1
= 0, (9)

q(eθ∗∗1 )b+ [xAe
θ∗∗
2 + yAd(1)]θ − cA(eθ∗∗1 , eθ∗∗2 ) ≥ max

e1,e2

{
q(e1)b+ [xAe2 + yAd(0)]θ − cA(e1, e2)

}
.

(10)

(9) implies that the type-θ agent optimally chooses e1 given e2 = eθ∗∗2 . (10) represents the condition

in which the type-θ agent does not have the incentive to choose e2 6= eθ∗∗2 . By the assumption of

the second-order condition, the set of separating equilibria given d(µe2) is characterized as a tuple

of actions that satisfies (6)-(10).
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Note that eθ∗, which is characterized by (2) and (3) in the benchmark case, maximizes the

type-θ agent’s payoff when µe2 = 1, i.e.,

eθ∗ = argmax(e1,e2)

{
q(e1)b+ [xAe2 + yAd(1)]θ − cA(e1, e2)

}
.

Given eθ∗∗ and eθ∗∗, let ẽ2 denote the effort level of task 2 where ẽ2 is the highest value among

which (8) binds. Let ẽ1 denote the associated effort level of task 1.

In the proof of Proposition 3, we show that if the type-θ agent’s action profile in a separating

equilibrium survives the Intuitive Criterion, then it is either eθ∗∗ = eθ∗ or eθ∗∗ = ẽ2 with ẽ2 > eθ∗2 .

In either case, the type-θ agent’s equilibrium action profile is the same as in the benchmark case:

eθ∗∗ = eθ∗. Note that each action profile of the type-θ agent is uniquely determined, implying that

the separating equilibrium that survives the Intuitive Criterion is unique. We also show that all

pooling equilibria (i.e., both types of the agent choose the same task-2 effort level) fail to survive

the Intuitive Criterion. Proposition 3 summarizes the results.

Proposition 3. In continuation games played by the agent and follower, a perfect-Bayesian equi-

librium that survives the Intuitive Criterion is unique. It is a separating equilibrium: different

types of the agent choose different levels of e2.

4.3 Optimal Contract

We now characterize the optimal contract given the above equilibrium actions. Note that the

equilibrium effort levels of the type-θ agent are eθ∗∗ = eθ∗, and the equilibrium effort level of task

2 of the type-θ agent is given by eθ∗∗2 = max{eθ∗2 , ẽ2}.

In the optimal contract, the individual rationality constraint binds; otherwise, the principal can

reduce w. Hence, the principal sets:

w = ū−µ[q(eθ∗∗1 )b+ (xAe
θ∗∗
2 + yAd(1))θ − cA(eθ∗∗1 , eθ∗∗2 )]

−(1− µ)[q(e
θ∗∗
1 )b+ (xAe

θ∗∗
2 + yAd(0))θ − cA(e

θ∗∗
1 , e

θ∗∗
2 )].

The principal’s profits are

Π =µ
{
q(eθ∗∗1 )(V − b) + [xP e

θ∗∗
2 + yPd(1)]θ

}
+ (1− µ)

{
q(e

θ∗∗
1 )(V − b) + [xP e

θ∗∗
2 + yPd(0)]θ

}
− w

=µ
{
q(eθ∗∗1 )V + [(xP + xA)eθ∗∗2 + (yP + yA)d(1)]θ − cA(eθ∗∗1 , eθ∗∗2 )

}
+ (1− µ)

{
q(e

θ∗∗
1 )V + [(xP + xA)e

θ∗∗
2 + (yP + yA)d(0)]θ − cA(e

θ∗∗
1 , e

θ∗∗
2 )

}
− ū, (11)
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where eθ∗∗2 = max{e∗2, ẽ2}. By solving this with respect to b in each case of eθ∗∗2 , Proposition 4

provides the optimal level of bonus in each case:

Proposition 4. (i) Consider the case where eθ∗2 ≥ ẽ2. Then, the optimal contract (w∗∗, b∗∗) is

given by (5). In particular, b∗∗ ≤ V holds strict inequality if xP > 0.

(ii) Consider the case where eθ∗2 < ẽ2. Then, the optimal contract (w∗∗, b∗∗) specifies

b∗∗ = V +

<0︷ ︸︸ ︷
µ
∂ẽ2
∂b

[
xAθ − ∂cA(ẽ1,ẽ2)

∂e2

]
+ xP

<0︷ ︸︸ ︷[
µ
∂ẽ2
∂b

θ + (1− µ)
∂e

θ∗∗
2

∂b
θ

]

µ
∂ẽ1
∂b

q′(ẽ1) + (1− µ)
∂e

θ∗∗
1

∂b
q′(e

θ∗∗
1 )︸ ︷︷ ︸

>0

. (12)

Specifically, when xP = 0, b∗∗ > V if and only if xAθ <
∂cA(ẽ1,ẽ2)

∂e2
.

Proposition 4 (i) covers the case where the signaling effect is not a relevant concern. In this case,

the optimal contract is derived using the same logic as in the benchmark case under symmetric

information. The intuition behind Proposition 4 (ii) is as follows. In this case, the type-θ agent

exerts excessive effort on task 2 because of a signaling motive. Then, setting a higher bonus on

task 1 reduces the type-θ agent’s effort level on task 2, which improves efficiency under excessive

signaling. By doing so, the principal can lower the fixed wage and increase expected profits.

Note that if xAθ ≥ ∂cA(ẽ1,ẽ2)
∂e2

(i.e., the marginal return on task 2 for the type-θ agent is non-

negative), the optimal contract specifies b∗∗ ≤ V . When xP = 0 so that b∗∗ = V in the benchmark

case, the inverse is also true: if xAθ <
∂cA(ẽ1,ẽ2)

∂e2
, then the optimal contract specifies b∗∗ > V . When

xP > 0 so that b∗∗ < V in the benchmark case, another effect arises: the principal directly receives

payoffs from task 2, which puts downward pressure on the optimal bonus level. Still, b∗∗ > V is

optimal if this effect is outweighed by the effect of mitigating the excessive signaling by the type-θ

agent.

Example We describe an example for Proposition 4 in which q(e1) = e1 (< 1), cF (d) = d2

2 ,

cA(e) = (e1)2

2 + (e2)2

2 + se1e2 where s ∈ (0, 1), xA = xF = yA = yF = yP = 1, and xP ≥ 0.

We first analyze the benchmark case under symmetric information. Because the follower also

observes θ, d∗ = θ for θ ∈ {θ, θ}. The type-θ agent maximizes his expected payoff w + eθ1b+ (eθ2 +

13



d∗)θ − cA(eθ) given (w, b); hence, the optimal action profile is (eθ∗1 , e
θ∗
2 ) =

(
b−sθ
1−s2 ,

θ−sb
1−s2

)
. Given the

above and binding individual rationality constraint, the principal solves the following problem:

max
b
µ
[
eθ∗1 V + {(xP + 1)eθ∗2 + 2θ}θ− cA(eθ∗)

]
+ (1− µ)

[
e
θ∗
1 V + {(xP + 1)e

θ∗
2 + 2θ}θ− cA(eθ∗)

]
− ū.

By solving it, b∗ = V − sxPE(θ).

Next, we analyze our main case. Let eθ∗∗i denote the equilibrium action of a type-θ agent

in task i. For the type-θ agent, (e
θ∗∗
1 , e

θ∗∗
2 ) = (e

θ∗
1 , e

θ∗
2 ) =

(
b−sθ
1−s2 ,

θ−sb
1−s2

)
. For the type-θ agent,

eθ∗∗2 = max{eθ∗2 , ẽ2}, where eθ∗2 is determined at the type-θ agent’s payoff and ẽ2 is determined by

holding the type-θ agent’s incentive compatibility constraint with equality. When max{eθ∗2 , ẽ2} =

eθ∗2 , the optimal action profile and the optimal contract are the same as those in the benchmark

case. When max{eθ∗2 , ẽ2} = ẽ2, (eθ∗∗1 , eθ∗∗2 ) =
(
b−sθ−sD

1−s2 , θ−sb+D
1−s2

)
where D =

√
2(1− s2)θ∆θ. The

optimal bonus is b∗∗ = V − sxPE(θ) +µs(D−∆θ) and w∗∗ is determined as holding the individual

rationality constraint with equality. Consequently, when D > ∆θ or 2(1− s2)θ > ∆θ, the optimal

bonus for task 1 when the agent has private information on task 2 is higher than when all parties

have symmetric information (i.e., b∗∗ > b∗). This example illustrates how the bonus upon the

success of the contractible task may exceed the revenue from contractible task V .

5 Applications

This section presents three applications of our model: pay for performance, incentives to help other

agents, and prevention of overwork.

5.1 Pay for Performance

Murphy and Zábojnik (2004) discuss that there are two components for CEOs: general management

skills (i.e., the skills transferable across companies) that are priced in a labor market and firm-

specific managerial skills (i.e., information about its products, suppliers, and clients) that are

unpriced.

In our model, unpriced managerial skills are private information. Investing in such an unpriced

skill by closely communicating with suppliers and clients can be beneficial to the company. On the

other hand, a CEO might enjoy having parties, wining and dining, or empire-building. As men-

tioned in Hermalin (2016), J.P. Morgan estimated that US corporate expenditure on entertainment
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was about $7.85 billion in 2011.15 Harford (1999) reports that CEOs may use abundant internal

resources for empire-building: making bad acquisitions and destroying shareholder value.

For optimal signaling (to stakeholders, creditors, or employees), our results imply that the price

for the general management skills, which is discussed in Murphy and Zábojnik (2004), is even

higher in the multitasking setting than in the corresponding single-task setting. We highlight that

high payments for general management skills can improve the efficiency of unpriced firm-specific

management skills, because it alleviates excessive unpriced activities, such as wining and dining or

empire-building.

5.2 Help

Our results have implications for an agent’s incentives to help other agents (Itoh, 1991; Ishihara,

2017; Tymula, 2017). An agent may allocate his effort to a non-contractible activity that helps

other agents (i.e., task 2 in our model). We show that a lower (indirect) incentive to help other

agents (i.e., increasing b) may increase the credibility of the signal and incentives to help other

agents. In this sense, our results highlight a new rationale of the enhancement of cooperation

among agents by providing high-powered incentives to individual performance.

For example, consider a sales department that provides high-powered incentives for individual

sales performance. While each agent can work on individual sales, he can also help his colleagues

(e.g., by sharing market information among agents), though it crowds out his sales performance.

While such helpful activities can be beneficial, an agent may indulge in them even when it does

not contribute much to organizational performance. The problem is that it is difficult for the

principal to evaluate the extent to which how each helpful activity contributes to organizational

performance. Hence, the principal may prefer to indirectly control the agents’ informal activities

through the individual sales activities, which is objectively easier to measure its performance. We

show that when the value of the helpful activity is private information of the agent, the principal

may provide high-powered incentives to the contractible activity. This leads to a separation between

beneficial and non-beneficial activities.

Although we are unaware of any empirical study that jointly investigates incentives to help and

agents’ signaling motives, Drago and Garvey (1998) and Danilov et al. (2019) provide evidence of

15 Hermalin (2016) analyzes how such wining and dining can facilitate inter-firm cooperation, even when firms can
use their own incentive systems.
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incentives to help other work members. From the perspective of the classical multitasking model,

in which tasks are substitutes, an increased incentive would be detrimental as it reduces the effort

on the non-contractible task. However, given our signaling model, the reduced effort may be

efficiency-improving, as it alleviates excessive signaling in the non-contractible task.

5.3 Overwork

Our mechanism could also have implications for overworking. As an example of overwork, the

Ministry of Health, Labour and Welfare in Japan reported that more than half of full-time employees

experienced a high (or an extremely high) degree of fatigue (Mizuho Information & Research

Institute Inc., 2016). Galinsky et al. (2005) review overwork in the US and argue that one third of

all US employees could be viewed as chronically overworked. Importantly, Galinsky et al. (2005)

report that being overworked seems to be caused by multitasking (e.g., jumping from task to task)

and exerting effort on non-contractable work (e.g., cell-phone calls during non-work times).

In contrast to the conventional wisdom that high-powered incentives lead to excessive effort,

our multitasking model implies that the principal may provide high-powered incentives to the

contractible task to mitigate an agent’s excessive effort on the non-contractible task. In this sense,

our results offer new insights into bonus cultures and overwork.

6 Concluding Remarks

This study investigates multitasking problems in which some agents have private information on

the value of a non-contractible task. We characterize the conditions in which the principal provides

high-powered incentives for the contractible task, which contrasts with the finding by Holmstrom

and Milgrom (1991) Our results help to understand leadership in organizations, CEO pay for

performance, incentives to help other workers, and prevention of overwork.

Beyond the applications discussed, our mechanism can be applied to several important topics.

One potential application is signaling in charitable giving (e.g., Vesterlund 2003; Andreoni 2006).

Suppose a donor has private information (e.g, quality of charity) and initially contributes. This lead

donor’s contribution may signal to other potential donors who might also contribute. Designing

optimal charity schemes (e.g., tax deduction) in such a situation could be worth considering. An-

other potential application is the introduction of monitoring technologies, such as Sinclair-Desgagné
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(1999) and Gil and Mondria (2011). How our signaling effect interacts with monitoring is left for

future research.
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Appendix: Proofs

Proof of Proposition 1.

We first study a benchmark case in which all parties observe the signal on the value of task 2.

Next, we characterize PBE in the binary model with private information. Then, we derive optimal

contracts.

Benchmark: Symmetric Information Because there is no private information, the follower’s

choice does not depend on the agent’s choice of task 2. The follower chooses d = 1 when θ = θ and

d = 0 when θ = θ by Assumption 1 (ii).

We first characterize the agent’s behavior. Given (w, b) and θ is realized, the agent’s payoff for

his each choice is uθ(1, 0) = w+qb+yAd(θ)θ if he chooses e = (1, 0) and uθ(0, 1) = w+(xA+yAd(θ))θ

if he chooses e = (0, 1), where d(θ) = 1 and d(θ) = 0 which do not depend on the agent’s action.

Because uθ(1, 0) ≥ uθ(0, 1) if and only if b ≥ xAθ
q , the agent with type θ chooses e = (1, 0) if and

only if b ≥ xAθ
q .

We next derive the optimal contract in the benchmark case (w∗, b∗) depending on parameters.

In each case, w∗ is determined at holding the agent’s individual rationality constraint with equality:

µ[w∗ + qb∗ + yAd(θ)θ] + (1− µ)[w∗ + qb∗ + yAd(θ)θ] = w∗ + qb∗ + µyAθ = u if b∗ ≥ xAθ

q
,

µ[w∗ + (xA + yAd(θ))θ] + (1− µ)[w∗ + qb∗ + yAd(θ)θ] = w∗ + (1− µ)qb∗ + µ(xA + yA)θ = u if b∗ ∈
[
xAθ

q
,
xAθ

q

)
,

µ[w∗ + (xA + yAd(θ))θ] + (1− µ)[w + (xA + yAd(θ))θ] = w∗ + µ(xA + yA)θ + (1− µ)xAθ = u if b∗ <
xAθ

q
.

Then, the principal’s expected payoffs for each care are as follows:

π
b∗≥ xAθq

= q(V − b∗) + µyP θ − w∗ = qV + µ(yA + yP )θ − u,

π
b∗∈

[
xAθ

q ,
xAθ

q

) = (1− µ)q(V − b∗) + µxP θ + µyP θ − w∗ = (1− µ)qV + µ(xA + xP + yA + yP )θ − u,

π
b∗<

xAθ

q

= xPE(θ) + µyP θ − w∗ = µ(xA + xP + yA + yP )θ + (1− µ)(xA + xP )θ − u.

By comparing these payoffs and by the assumption that the principal sets the lowest bonus by
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which her intended equilibrium is played, the optimal contracts are derived as follows:

(w∗, b∗) =

(
u− xAθ − µyAθ,

xAθ

q

)
if V ≥ (xA + xP )θ

q
,

(w∗, b∗) =

(
u− (1− µ)xAθ − µ(xA + yA)θ,

xAθ

q

)
if V ∈

[
(xA + xP )θ

q
,
(xA + xP )θ

q

)
,

(w∗, b∗) =
(
u− (1− µ)xAθ − µ(xA + yA)θ, 0

)
if V <

(xA + xP )θ

q
.

Note that in any of the three cases, the principal sets b∗ ≤ xAθ
q . Hence, the optimal bonus under

symmetric information is at most b∗ = xAθ
q .

Perfect-Bayesian Equilibria Now we analyze the binary model with private information.

First, we derive separating equilibria. Because of Assumption 1 (ii), the candidate of a separat-

ing equilibrium is unique: eθ = (0, 1), eθ = (1, 0), d(0) = 0, and d(1) = 1. It is indeed an equilibrium

if and only if uθ(1, 0) ≤ uθ(0, 1) and uθ(0, 1) ≤ uθ(1, 0), or equivalently, (xA+yA)θ
q ≤ b ≤ (xA+yA)θ

q .

Second, we derive pooling equilibria. Note that in any pooling equilibrium, because of Assump-

tion 1 (ii), the follower chooses d = 0 on the equilibrium path. We focus on off-path beliefs in which

the follower’s belief is θ = θ after observing any deviation. We first consider the pooling equilibrium

in which eθ = eθ = (1, 0). In this case, uθ(1, 0) = w + qb. This kind of pooling equilibrium exists

when uθ(0, 1) ≤ uθ(1, 0) for all θ, that is, b ≥ xAθ
q .16 We next consider the pooling equilibrium in

which eθ = eθ = (0, 1). In this case, uθ(0, 1) = w + xAθ. This kind of pooling equilibrium exists

when uθ(1, 0) ≤ uθ(0, 1) for all θ, that is, b ≤ xAθ
q .

Third, for parameters under a pure-strategy PBE does not exists, i.e., b ∈
(
xAθ
q , xAθq

)
, we derive

mixed-strategy equilibria.17 In this case, the type-θ agent randomizes his actions. Suppose that the

type-θ agent takes eθ = (0, 1) with probability l ∈ (0, 1) and that the follower takes d(1) = 1 with

probability r ∈ (0, 1) and d(0) = 0 with probability one. Then, the type-θ agent takes eθ = (0, 1)

with probability one. Under the mixed-strategy equilibrium, the follower must choose r∗∗ which

induces the type-θ to be indifferent: qb = (1 − r∗∗)xAθ + r∗∗(xA + yA)θ ⇐⇒ r∗∗ = qb−xAθ
yAθ

. Note

that r∗∗ ∈ (0, 1) when b ∈ (xAθq , (xA+yA)θq ). Also, the type-θ agent must choose l∗∗ which induces

16 In Supplementary Material, we show that this type of equilibrium fails the Intuitive Criterion when (xA+yA)θ
q

<

b < (xA+yA)θ
q

.
17 In Supplementary Material, we derive all mixed-strategy PBE. We also show that the optimal contract never

induces a mixed-strategy PBE to be played.
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the follower to be indifferent: µ
µ+(1−µ)l∗∗ yF θ + (1−µ)l∗∗

µ+(1−µ)l∗∗ yF θ − cF = 0 ⇐⇒ l∗∗ = µ
1−µ

θyF−cF
cF−θyF . Note

that l∗∗ ∈ (0, 1) by Assumption 1 (ii).

Optimal Contracts We now derive the conditions in which (even when the principal sets the

lowest bonus by which her intended equilibrium is played) the principal offers higher-powered

incentives compared with the benchmark case. Note that the principal prefers the agent to accept

a contract and work on some task because ū < qV − cA and xP , yP ≥ 0. In the optimal contract,

the agent’s individual rationality constraint must bind:

w∗∗ = ū− µ[q(eθ∗∗1 )b+ {xAeθ∗∗2 + yAd(eθ∗∗2 )}θ]− (1− µ)[q(e
θ∗∗
1 )b+ {xAeθ∗∗2 + yAd(e

θ∗∗
2 )}θ],

where (eθ1, e
θ
2) is the optimal action profile of the agent with θ ∈ {θ, θ} derived above. Then, the

principal’s expected payoff is

Π =µ
{
q(eθ∗∗1 )(V − b) + [xP e

θ∗∗
2 + yP d(eθ∗∗2 )]θ

}
+ (1− µ)

{
q(e

θ∗∗
1 )(V − b) + [xP e

θ∗∗
2 + yP d(e

θ∗∗
2 )]θ

}
− w∗∗

=µ
{
q(eθ∗∗1 )V + [(xP + xA)eθ∗∗2 + (yP + yA)d(eθ∗∗2 )]θ

}
+ (1− µ)

{
q(e

θ∗∗
1 )V + [(xP + xA)e

θ∗∗
2 + (yP + yA)d(e

θ∗∗
2 )]θ

}
− u.

There are three possible cases under pure-strategy PBE. First, given that both types of the

agent work on task 1, the optimal contract with the lowest bonus is (w∗∗, b∗∗) = (u−xAθ, xAθq ) and

the principal’s payoff is πpool−1 = qV − u.

Second, given that both types of the agent work on task 2, the optimal contract with the lowest

bonus is (w∗∗, b∗∗) = (u− xAE(θ), 0) and the principal’s payoff is πpool−2 = (xA + xp)E(θ)− u.

Third, given that the type-θ agent works on task 2 and the type-θ agent works on task 1,

the optimal contract with the lowest bonus is (w∗∗, b∗∗) = (u − (xA + xP )E(θ), (xA+yA)θq ) and the

principal’s payoff is πsep = µ[(xP + xA + yP + yA)θ] + (1− µ)qV − u.

Note that

πsep > πpool−1 ⇐⇒ (xP + xA + yP + yA)θ > qV, (13)

πsep > πpool−2 ⇐⇒ µ[(yP + yA)θ] + (1− µ)[qV − (xA + xP )θ] > 0. (14)

From (13) and (14), we derive Condition (1) in Proposition 1.

Finally, we show that inducing a mixed strategy is not an optimal contract. Consider the mixed

strategy equilibrium in which the type-θ agent takes eθ = (0, 1) with probability l∗∗ = µ
1−µ

θyF−cF
cF−θyF
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and the follower takes d(1) = 1 with probability r∗∗ = qb−xAθ
yAθ

. In the optimal contract, the

principal chooses (w∗∗, b∗∗) which holds the agent’s individual rationality constraint with equality:

w∗∗ + (1− µ)(1− l∗∗)qb∗∗ + (1− r∗∗){µθ + (1− µ)l∗∗θ}xA + r∗∗{µθ + (1− µ)l∗∗θ}(xA + yA) = u.

The principal chooses b∗∗ ∈
[
xAθ
q , (xA+yA)θq

]
by which she maximizes her expected payoff:

Π =(1− µ)(1− l∗∗)q(V − b) + (1− r∗∗){µθ + (1− µ)l∗∗θ}xP + r∗∗{µθ + (1− µ)l∗∗θ}(xP + yP )

−
[
u− (1− µ)(1− l∗∗)qb− (1− r∗∗){µθ + (1− µ)l∗∗θ}xA − r∗∗{µθ + (1− µ)l∗∗θ}(xA + yA)

]
=(1− µ)(1− l∗∗)qV − u+ [µθ + (1− µ)l∗∗θ](xA + xP ) + [µθ + (1− µ)l∗∗θ](yA + yP )r∗∗

=(1− µ)

(
1− µ

1− µ
θyF − cF
cF − θyF

)
qV − u+

[
µθ + (1− µ)

µ

1− µ
θyF − cF
cF − θyF

θ

]
(xA + xP )

+

[
µθ + (1− µ)

µ

1− µ
θyF − cF
cF − θyF

θ

]
(yA + yP )

qb− xAθ
yAθ

.

Note that the payoff function is linear in b and its coefficient is positive because yA > 0. Hence,

the principal should choose b∗∗ = (xA+yA)θ
q , which implies r∗ = 1 and the optimal contract induces

a separating equilibrium.

Proof of Proposition 2.

We first prove
∂eθ∗1
∂b > 0 and

∂eθ∗2
∂b < 0. By applying the Implicit Function Theorem to (2) and (3),

we obtain:  q′′(eθ∗1 )b− ∂2cA(e
θ∗
1 ,eθ∗2 )

∂e21
−∂2cA(e

θ∗
1 ,eθ∗2 )

∂e1∂e2

−∂2cA(e
θ∗
1 ,eθ∗2 )

∂e1∂e2
−∂2cA(e

θ∗
1 ,eθ∗2 )

∂e22

 ∂eθ∗1
∂b

∂eθ∗2
∂b

 =

 −q′(eθ∗1 )

0

 ,
Solving this system of equations,

∂eθ∗1
∂b

=
q′(eθ∗1 )

∂2cA(e
θ∗
1 ,eθ∗2 )

∂e22

−
(
q′′(eθ∗1 )b− ∂2cA(e

θ∗
1 ,eθ∗2 )

∂e21

)
∂2cA(e

θ∗
1 ,eθ∗2 )

∂e22
−
(
∂2cA(e

θ∗
1 ,eθ∗2 )

∂e1∂e2

)2 > 0,

∂eθ∗2
∂b

=
−q′(eθ∗1 )

∂2cA(e
θ∗
1 ,eθ∗2 )

∂e1∂e2

−
(
q′′(eθ∗1 )b− ∂2cA(e

θ∗
1 ,eθ∗2 )

∂e21

)
∂2cA(e

θ∗
1 ,eθ∗2 )

∂e22
−
(
∂2cA(e

θ∗
1 ,eθ∗2 )

∂e1∂e2

)2 < 0,

where the denominator is positive by the assumption.

We next derive the optimal level of the bonus b∗. By taking the derivative of (4) with respect
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to b, b∗ is characterized by:

µ
∂eθ∗1
∂b

[
q′(eθ∗1 )V − ∂cA(eθ∗1 , e

θ∗
2 )

∂e1

]
+ µ

∂eθ∗2
∂b

[
(xP + xA)θ − ∂cA(eθ∗1 , e

θ∗
2 )

∂e2

]

+ (1− µ)
∂e

θ∗
1

∂b

[
q′(e

θ∗
1 )V − ∂cA(e

θ∗
1 , e

θ∗
2 )

∂e1

]
+ (1− µ)

∂e
θ∗
2

∂b

[
(xP + xA)θ − ∂cA(e

θ∗
1 , e

θ∗
2 )

∂e2

]
= 0.

By substituting (2) and (3) into the above equality, we obtain:

µ
∂eθ∗1
∂b

q′(eθ∗1 )(V − b∗) + µ
∂eθ∗2
∂b

xP θ + (1− µ)
∂e

θ∗
1

∂b
q′(e

θ∗
1 )(V − b∗) + (1− µ)

∂e
θ∗
2

∂b
xP θ = 0.

By rearranging this equality, we obtain (5).

Proof of Proposition 3.

Separating Equilibria We refine the separating equilibria derived in the main text by adopting

the Intuitive Criterion. We first show that if (eθ∗∗1 , eθ∗∗2 ) 6= eθ∗, then (8) must hold with equality.

Suppose, toward a contradiction, that there is a separating equilibrium with (eθ∗∗1 , eθ∗∗2 ) 6= eθ∗ and

(8) holds with strict inequality. Note that eθ∗∗2 6= eθ∗2 ; otherwise, eθ∗∗1 = eθ∗1 and hence (eθ∗∗1 , eθ∗∗2 ) =

eθ∗ by the right hand side of (8) and (9). Because (8) holds with strict inequality, there exists ε > 0

such that

q(e
θ∗∗
1 )b+ [xAe

θ∗∗
2 + yAd(0)]θ − cA(e

θ∗∗
1 , e

θ∗∗
2 ) > max

e1

{
q(e1)b+ [xAe

′
2 + yAd(1)]θ − cA(e1, e

′
2)
}

for any e′2 ∈ (eθ∗∗2 − ε, eθ∗∗2 + ε). This implies that any action e′2 ∈ (eθ∗∗2 − ε, eθ∗∗2 + ε) is equilibrium

dominated for the type-θ agent. Next, we check the case of the type-θ agent. Note that q(e1)w +

[xAe2 + yAd(1)]θ − cA(e1, e2) is strictly concave by the assumption of the second-order condition;

it implies that any eθ∗∗2 6= eθ∗2 is not a local maximum. Hence, there exists e′2 ∈ (eθ∗∗2 − ε, eθ∗∗2 + ε)

such that

q(eθ∗∗1 )b+ [xAe
θ∗∗
2 + yAd(1)]θ − cA(eθ∗∗1 , eθ∗∗2 ) < max

e1

{
q(e1)b+ [xAe

′
2 + yAd(1)]θ − cA(e1, e

′
2)
}
.

That is, such an e′2 is not equilibrium dominated for the type-θ agent. By the Intuitive Criterion,

after observing e′2, the follower must conclude that the deviation comes from the type-θ agent (i.e.,

µe′2 = 1). But given this belief, the type-θ agent has an incentive to deviate from (eθ∗∗1 , eθ∗∗2 ) to

the above action profile — a contradiction. This result implies that in any separating equilibrium

surviving the Intuitive Criterion, either (eθ∗∗1 , eθ∗∗2 ) = eθ∗ or (8) binds.
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We now show that if (eθ∗∗1 , eθ∗∗2 ) 6= eθ∗, then eθ∗∗2 is the highest value among which (8) binds,

i.e., eθ∗∗2 = ẽ2. Suppose, toward a contradiction, that in some separating equilibrium which survives

the Intuitive Criterion, there exists (eθ∗∗1 , eθ∗∗2 ) such that (eθ∗∗1 , eθ∗∗2 ) 6= eθ∗ and eθ∗∗2 6= ẽ2. By the

definition of ẽ2, e
θ∗∗
2 < ẽ2 holds. Because (8) binds at both (eθ∗∗1 , eθ∗∗2 ) and (ẽ1, ẽ2),

q(e
θ∗∗
1 )b+ [xAe

θ∗∗
2 + yAd(0)]θ − cA(e

θ∗∗
1 , e

θ∗∗
2 ) = max

e1

{
q(e1)b+ [xAe

θ∗∗
2 + yAd(1)]θ − cA(e1, e

θ∗∗
2 )

}
,

(15)

q(e
θ∗∗
1 )b+ [xAe

θ∗∗
2 + yAd(0)]θ − cA(e

θ∗∗
1 , e

θ∗∗
2 ) = max

e1
{q(e1)b+ [xAẽ2 + yAd(1)]θ − cA(e1, ẽ2)} .

(16)

Combining (15) and (16), we have

max
e1

{
q(e1)b+ [xAe

θ∗∗
2 + yAd(1)]θ − cA(e1, e

θ∗∗
2 )

}
= max

e1
{q(e1)b+ [xAẽ2 + yAd(1)]θ − cA(e1, ẽ2)} .

Because eθ∗∗2 < ẽ2, 0 < xAe
θ∗∗
2 + yAd(1) < xAẽ2 + yAd(1). Hence, replacing θ with θ in the above

equality leads to

max
e1

{
q(e1)b+ [xAe

θ∗∗
2 + yAd(1)]θ − cA(e1, e

θ∗∗
2 )

}
< max

e1

{
q(e1)b+ [xAẽ2 + yAd(1)]θ − cA(e1, ẽ2)

}
.

(17)

Note that the left hand side of (17) is none other than the equilibrium payoff of the type-θ agent

by choosing (eθ∗∗1 , eθ∗∗2 ). Similarly to the previous paragraph, any action e2 > ẽ2 is equilibrium

dominated for the type-θ agent. (17) implies that there exists e′2 = ẽ2 + ε with a sufficiently

small ε > 0 which is not equilibrium dominated for the type-θ agent. Hence, the type-θ agent can

profitably deviate by choosing such an e′2 — a contradiction.

We show that in any separating equilibrium surviving the Intuitive Criterion where (eθ∗∗1 , eθ∗∗2 ) 6=

eθ∗, ẽ2 > eθ∗2 must hold. Note that if ẽ2 = eθ∗2 , then eθ∗∗1 = eθ∗1 and hence eθ∗∗ = eθ∗. Hence, toward

a contradiction, suppose ẽ2 < eθ∗2 . Then, as discussed in the previous paragraph, any action e2 > ẽ2

is equilibrium dominated for the type-θ agent; implying that eθ∗2 is equilibrium dominated for the

type-θ agent. Because eθ∗ is the action profile that maximizes the type-θ agent’s payoff when

µe2 = 1, eθ∗2 is not equilibrium dominated for the type-θ agent. Hence, by the Intuitive Criterion,

after observing eθ∗2 , the follower must conclude that the deviation comes from the type-θ agent (i.e.,

µ
eθ∗2

= 1). But then, the type-θ agent can profitably deviate by choosing eθ∗ — a contradiction.
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We also check that (10) is not binding in any separating equilibrium surviving the Intuitive

Criterion. Note that the the right hand side of (10) is maximized by choosing eθ∗. Hence, when

eθ∗∗ = eθ∗, (10) is not binding. When eθ∗∗ = ẽ, (8) hold with equality, so by rewriting it yields:

q(e
θ∗∗
1 )b+ [xAe

θ∗∗
2 + yAd(0)]θ − cA(e

θ∗∗
1 , e

θ∗∗
2 ) = max

e1
{q(e1)b+ [xAẽ2 + yAd(1)]θ − cA(e1, ẽ2)} .

Because (e
θ∗∗
1 , e

θ∗∗
2 ) maximizes the type-θ agent’s payoff given d = d(0), we have

q(e
θ∗∗
1 )b+ [xAe

θ∗∗
2 + yAd(0)]θ − cA(e

θ∗∗
1 , e

θ∗∗
2 ) > q(eθ∗1 )b+ [xAe

θ∗
2 + yAd(0)]θ − cA(eθ∗1 , e

θ∗
2 ).

By combining it with the above equality, we obtain:

max
e1
{q(e1)b+ [xAẽ2 + yAd(1)]θ − cA(e1, ẽ2)} > q(eθ∗1 )b+ [xAe

θ∗
2 + yAd(0)]θ − cA(eθ∗1 , e

θ∗
2 ).

Because eθ∗2 < ẽ2, 0 < xAe
θ∗
2 + yAd(0) < xAẽ2 + yAd(1). Hence, replacing θ with θ in the above

inequality leads to

max
e1

{
q(e1)b+ [xAẽ2 + yAd(1)]θ − cA(e1, ẽ2)

}
> q(eθ∗1 )b+ [xAe

θ∗
2 + yAd(0)]θ − cA(eθ∗1 , e

θ∗
2 ). (18)

Note that the left hand side of (18) is none other than the equilibrium payoff of the type-θ agent.

Because the right hand side of (10) is maximized by choosing e∗, we have shown that (10) is not

binding in any separating equilibrium surviving the Intuitive Criterion.

In summary, we have shown that in any separating equilibrium surviving the Intuitive Criterion,

either eθ∗∗ = eθ∗ or eθ∗∗ = ẽ where ẽ2 > eθ∗2 . In either case, the type-θ agent’s equilibrium action

profile is given by (6) and (7) and hence eθ∗∗ = eθ∗.

Pooling Equilibria We next analyze the set of pooling equilibria in that both types of the agent

take e∗∗2 ≥ 0. We derive it by restricting the off-path belief that the follower always thinks that a

deviating agent must be the low type: µe2 = 0 for any e2 6= e∗∗2 . Then, each type of the agent’s
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action profile must satisfy the following conditions:

q′(e
θ∗∗
1 )b− ∂cA(e

θ∗∗
1 , e∗∗2 )

∂e1
= 0, (19)

q(e
θ∗∗
1 )b+ [xAe

∗∗
2 + yAd(µ)]θ − cA(e

θ∗∗
1 , e∗∗2 ) ≥ max

(e1,e2)
{q(e1)b+ [xAe2 + yAd(0)]θ − cA(e1, e2)} ,

(20)

q′(eθ∗∗1 )b− ∂cA(eθ∗∗1 , e∗∗2 )

∂e1
= 0, (21)

q(eθ∗∗1 )b+ [xAe
∗∗
2 + yAd(µ)]θ − cA(eθ∗∗1 , e∗∗2 ) ≥ max

(e1,e2)

{
q(e1)b+ [xAe2 + yAd(0)]θ − cA(e1, e2)

}
.

(22)

A pooling equilibrium is characterized by a tuple of actions ((e
θ∗∗
1 , e∗∗2 ), (eθ∗∗1 , e∗∗2 )) that satisfies

(19)-(22).

We next show that there is no pooling equilibrium that survives the Intuitive Criterion. Suppose,

toward a contradiction, that there is such an equilibrium. When (20) holds with strict inequality,

by the same argument as in the proof of separating equilibria, there exists ε > 0 such that any

action e′2 ∈ (e∗∗2 − ε, e∗∗2 + ε) is equilibrium dominated for the type-θ agent and the type-θ agent

has an incentive to deviate to e′2. When (20) holds with equality, take the highest value ē2 which

satisfies the following equality:

q(e
θ∗∗
1 )b+ [xAe

∗∗
2 + yAd(µ)]θ − cA(e

θ∗∗
1 , e∗∗2 ) = max

e1
{q(e1)b+ [xAē2 + yAd(1)]θ − cA(e1, ē2)} .

Note that ē2 > e∗∗2 , as (20) holds with equality. By (19), the above equality can be written as

max
e1
{q(e1)b+ [xAe

∗∗
2 + yAd(µ)]θ − cA(e1, e

∗∗
2 )} = max

e1
{q(e1)b+ [xAē2 + yAd(1)]θ − cA(e1, ē2)} .

Because θ > θ, ē2 > e∗∗2 and d(µ) < d(1), the above equality implies

max
e1

{
q(e1)b+ [xAe

∗∗
2 + yAd(µ)]θ − cA(e1, e

∗∗
2 )
}
< max

e1

{
q(e1)b+ [xAē2 + yAd(1)]θ − cA(e1, ē2)

}
.

(23)

Note that the left hand side of (23) is none other than the equilibrium payoff of the type-θ agent. As

any action ē2 + ε with ε > 0 is equilibrium dominated for the type-θ agent, by taking a sufficiently

small ε > 0, the type-θ agent can profitably deviate by choosing ē2 + ε — a contradiction.
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Proof of Proposition 4.

(i) When eθ∗∗2 = eθ∗2 , neither (8) nor (10) is binding; the signaling effect is not a relevant concern

for each type of the agent. Hence, the optimal contract specifies b∗∗ ≤ V (and b∗∗ < V if xP > 0)

by the same derivation with the benchmark case under symmetric information.

(ii) Suppose eθ∗∗2 = ẽ2. Let em1 denote the effort level of task 1 which satisfies (8) with equality

(i.e., the effort level of task 1 chosen by the type-θ agent when he mimics the type-θ agent), which

is characterized as:

q′(em1 )b− ∂cA(em1 , ẽ2)

∂e1
= 0. (24)

Because e
θ∗∗
2 < ẽ2 and ∂2cA(e1,e2)

∂e1∂e2
> 0, em1 < e

θ∗∗
1 and hence q(em1 ) < q(e

θ∗∗
1 ) holds. Note also that

(8) holds with equality as follows:

q(em1 )b+ [xAẽ2 + yAd(1)]θ − cA(em1 , ẽ2)−
{
q(e

θ∗∗
1 )b+ [xAe

θ∗∗
2 + yAd(0)]θ − cA(e

θ∗∗
1 , e

θ∗∗
2 )

}
= 0.

(25)

In this case, the equilibrium effort levels are characterized by (6), (7), (24), (9), and (25). By

applying the Implicit Function Theorem, we obtain:

q′′(e
θ∗∗
1 )b− ∂2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e21
−∂

2cA(e
θ∗∗
1 ,e

θ∗∗
2 )

∂e1∂e2
0 0 0

−∂
2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e1∂e2
−∂

2cA(e
θ∗∗
1 ,e

θ∗∗
2 )

∂e22
0 0 0

0 0 q′′(em1 )b− ∂2cA(em1 ,ẽ2)

∂e21
0 −∂

2cA(em1 ,ẽ2)
∂e1∂e2

0 0 0 q′′(ẽ1)b− ∂2cA(ẽ1,ẽ2)
∂e21

−∂
2cA(ẽ1,ẽ2)
∂e1∂e2

0 0 0 0 xAθ − ∂cA(em1 ,ẽ2)
∂e2



·



∂e
θ∗∗
1

∂b

∂e
θ∗∗
2

∂b

∂em1
∂b

∂ẽ1
∂b

∂ẽ2
∂b


=



−q′(eθ∗∗1 )

0

−q′(em1 )

−q′(eθ∗∗1 )

q(e
θ∗∗
1 )− q(em1 )


.

Let A denote the above 5 × 5 matrix. Note that (5, 1), (5, 2), and (5, 3) elements of A are zero

by using (6), (7), and (24), respectively. By Cramer’s rule, as well as q(em1 ) < q(e
θ∗∗
1 ) and the
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assumptions, we obtain the following comparative statics:

∂e
θ∗∗
1

∂b
=

q′(e
θ∗∗
1 )

∂2cA(e
θ∗∗
1 ,e

θ∗∗
2 )

∂e22

−
(
q′′(e

θ∗∗
1 )b− ∂2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e21

)
∂2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e22
−
(
∂2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e1∂e2

)2 > 0,

∂e
θ∗∗
2

∂b
=

−q′(eθ∗∗1 )
∂2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e1∂e2

−
(
q′′(e

θ∗∗
1 )b− ∂2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e21

)
∂2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e22
−
(
∂2cA(e

θ∗∗
1 ,e

θ∗∗
2 )

∂e1∂e2

)2 < 0,

∂em1
∂b

=

−q′(em1 ) +
∂2cA(e

m
1 ,ẽ2)

∂e1∂e2

q(e
θ∗∗
1 )−q(em1 )

xAθ−
∂cA(em1 ,ẽ2)

∂e2

q′′(em1 )b− ∂2cA(e
m
1 ,ẽ2)

∂e21

> 0,

∂ẽ1
∂b

=

−q′(eθ∗∗1 ) + ∂2cA(ẽ1,ẽ2)
∂e1∂e2

q(e
θ∗∗
1 )−q(em1 )

xAθ−
∂cA(em1 ,ẽ2)

∂e2

q′′(ẽ1)b− ∂2cA(ẽ1,ẽ2)
∂e21

> 0,

∂ẽ2
∂b

=
q(e

θ∗∗
1 )− q(em1 )

xAθ −
∂cA(e

m
1 ,ẽ2)

∂e2

< 0.

We next derive the optimal level of the bonus b∗∗ when eθ∗∗2 = ẽ2. By taking the derivative of

(11) with respect to b, b∗∗ is characterized by:

µ
∂ẽ1
∂b

[
q′(ẽ1)V −

∂cA(ẽ1, ẽ2)

∂e1

]
+ µ

∂ẽ2
∂b

[
(xP + xA)θ − ∂cA(ẽ1, ẽ2)

∂e2

]
+ (1− µ)

∂e
θ∗∗
1

∂b

[
q′(e

θ∗∗
1 )V − ∂cA(e

θ∗∗
1 , e

θ∗∗
2 )

∂e1

]
+ (1− µ)

∂e
θ∗∗
2

∂b

[
(xP + xA)θ − ∂cA(e

θ∗∗
1 , e

θ∗∗
2 )

∂e2

]
= 0.

By substituting (6), (7), and (9) into the above equality, we obtain:

µ
∂ẽ1
∂b

q′(ẽ1)(V − b∗∗) + µ
∂ẽ2
∂b

[
(xP + xA)θ − ∂cA(ẽ1, ẽ2)

∂e2

]
+ (1− µ)

∂e
θ∗∗
1

∂b
q′(e

θ∗∗
1 )(V − b∗∗) + (1− µ)

∂e
θ∗∗
2

∂b
xP θ = 0.

By rearranging this equality, we obtain (12).
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Supplementary Material for “The Provision of High-powered In-

centives under Multitasking” by Daido and Murooka (not intended

for publication)

A Illustration with Binary Effort: Full Characterization

In the binary illustrative model with private information, Proposition 1 derives the optimal con-

tracts under the assumption that a pure-strategy PBE is played whenever it exists. Here, we

characterize PBE including all mixed-strategy equilibria, as well as applying the Intuitive Criterion

(Cho and Kreps, 1987). We then argue that the optimal contracts shown in Proposition 1 remain

the same, so focusing on pure-strategy PBE is without loss of generality when we derive the optimal

contracts.

In addition to PBE derived in Proposition 1, there exist other two types of mixed-strategy

equilibria. One kind of mixed-strategy equilibria is that the type-θ agent randomizes his actions.

In such an equilibrium, the type-θ agent must choose eθ = (1, 0) with probability one. Given

that, by Assumption 1 (ii), the follower chooses d(1) = 1 with probability one and d(0) = 0 with

probability one. Then, for the type-θ agent to be indifferent, b = (xA+yA)θ
q . In this case, any

mixture of the actions of the type-θ agent constitutes an equilibrium.

Another kind of mixed-strategy equilibria is that the type-θ agent randomizes his actions, while

the follower does not. Suppose that the type-θ agent takes eθ = (0, 1) with probability l ∈ [0, 1]

and that the follower takes d(1) = 1 and d(0) = 0 with probability one. Then, the type-θ agent

takes eθ = (0, 1) with probability one. Under the mixed-strategy equilibrium, the type-θ must

be indifferent: qb = (xA + yA)θ ⇐⇒ b = (xA+yA)θ
q . Also, the type-θ agent must choose l which

induces the follower to weakly prefer to play d(1) = 1: µ
µ+(1−µ)lyF θ + (1−µ)l

µ+(1−µ)lyF θ − cF ≥ 0 ⇐⇒

l ≤ µ
1−µ

θyF−cF
cF−θyF .

We next show that the pooling equilibrium eθ = eθ = (1, 0), which is described in Section 3,

fails the Intuitive Criterion when (xA+yA)θ
q < b < (xA+yA)θ

q . For the type-θ agent, his equilibrium

payoff is w+ qb, whereas his payoff upon deviation to e′ = (0, 1) is at most w+ (xA + yA)θ. Hence,

eθ = (1, 0) is equilibrium dominated for the type-θ agent. For the type-θ agent, his equilibrium

payoff is w+ qb, whereas his payoff upon deviation to e′ = (0, 1) is at most w+ (xA + yA)θ. Hence,

1



eθ = (1, 0) is not equilibrium dominated for the type-θ agent. Hence, the pooling equilibrium

eθ = eθ = (1, 0) survives the Intuitive Criterion when xAθ
q ≤ b ≤

(xA+yA)θ
q or b ≥ (xA+yA)θ

q .

As a result, equilibrium strategies in the perfect-Bayesian equilibria that survives the Intuitive

Criterion are summarized depending on the level of b as follows:

(i) (task-2 pooling) If b ≤ xAθ
q , then eθ = eθ = (0, 1) and d(1) = d(0) = 0.

(ii) (type-θ mixed) If b ∈
(
xAθ
q , xAθq

)
, then eθ = (0, 1), the type-θ agent takes eθ = (0, 1) with

probability µ
1−µ

θyF−cF
cF−θyF ∈ (0, 1), and the follower takes d(1) = 1 with probability qb−xAθ

yAθ
∈

(0, 1) and d(0) = 0 with probability one.

(iii) (task-1 pooling and type-θ mixed) If b ∈
[
xAθ
q , (xA+yA)θq

)
, then there exist two kinds of

equilibria: (i) eθ = eθ = (1, 0) and d(1) = d(0) = 0. (ii) eθ = (0, 1), the type-θ agent

takes eθ = (0, 1) with probability µ
1−µ

θyF−cF
cF−θyF ∈ (0, 1), and the follower takes d(1) = 1 with

probability qb−xAθ
yAθ

∈ (0, 1) and d(0) = 0 with probability one.

(iv) (task-1 pooling, separating, and type-θ mixed) If b = (xA+yA)θ
q , then eθ = (0, 1), the type-θ

agent takes eθ = (0, 1) with probability l ∈
[
0, µ

1−µ
θyF−cF
cF−θyF

]
, d(1) = 1, and d(0) = 0.

(v) (separating) If b ∈
(
(xA+yA)θ

q , (xA+yA)θq

)
, then eθ = (0, 1), eθ = (1, 0), d(1) = 1, and d(0) = 0.

(vi) (task-1 pooling, separating, and type-θ mixed) If b = (xA+yA)θ
q , then the type-θ agent takes

eθ = (0, 1) with probability h ∈ [0, 1], eθ = (1, 0), d(1) = 1, and d(0) = 0.

(vii) (task-1 pooling) If b > (xA+yA)θ
q , then eθ = eθ = (1, 0) and d(1) = d(0) = 0.

Next, we argue that the optimal contracts shown in Proposition 1 remains the same. In the

proof of Proposition 1, we show that the principal does not induce the agent and the follower to

play a mixed strategy in (ii) and (iii) above. By the similarly derivations, it is easy to check that

the principal does not induce the agent and the follower to play a mixed strategy in (iv) and (vi)

above.
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