
1



1 Introduction

What determines the growth rate of a firm? The average growth rate of capital stock

of firms that continuously appear in the COMPUSTAT data set between 1970 and

1999 was about 16% during the 1970s, 14% during the 1980s and 15% during the

1990s1. Major companies in the U.S. continued to grow for the 30 years covered by

our data set.

In order to explain the continuous expansion of a firm, traditional investment

theories typically assume the existence of a convex adjustment cost function [e.g.,

Lucas and Prescott (1971)]. This explicitly links the growth rate of capital to Tobin’s

Q. The derived growth rate is independent of the firm’s size, which arguably serves

as a first approximation for the growth of a large firm [e.g., Sutton (1997)]. The

dynamics of a firm are described as a process of adjustment toward the desired capital

stock.

However, this adjustment cost function is questioned by evidence that investment

is lumpy at the plant level [e.g., Doms and Dunne (1998)]. Lumpy investment is

more consistent with alternative theories that emphasize the importance of a non-

convex adjustment cost function [ e.g., Caballero (1999)]. Different from the Q

theory of investment, adjustment is immediate once a firm decides to invest. Hence,

continuous growth must be explained by expanding exogenous external investment

opportunities2.

In contrast to previous literature, this paper completely dismisses conventional

adjustment cost functions from our model and examines an alternative friction: a
1The average growth rate of capital is the net value of property, plant and equipment (Compustat

# 8) over the deflator for nonresidential investment. The deflator is taken from the Bureau of

Economic Analysis.
2Abel and Eberly (1994) incorporate two frictions into one model and discuss its relation to

Q. Cooper and Haltiwanger (2000) argue that a model that mixes both convex and nonconvex

adjustment costs with irreversibility fits plant-level data well.
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firm cannot optimize more than one input3. Hence, the immediate adjustment of

more than one input is prohibited. It is shown that each investment is lumpy as in

sunk cost models, but adjustment is gradual as in convex adjustment cost models.

The particular friction that this paper aims to capture is the limited capacity

of human attention, the importance of which was originally emphasized by Simon

(1947). It is a common observation that organizations demand millions of immedi-

ate decisions, but individual CEOs are not able to handle all of them at the same

time. As it is difficult to delegate strategic decisions, such as finding investment

projects, to other managers, CEOs must spend much of their time making and im-

plementing an investment plan. Because their attention capacity is limited, CEOs

must postpone other strategic decisions such as developing a trained management

group. We investigate how the allocation of attention influences the growth rate of

a firm.

In order to determine the growth rate, we need one more assumption: there is

interaction among inputs, where the interaction means that inputs are strict comple-

ments or strict substitutes. When there is no interaction among inputs, adjustment

is immediate: the firm immediately chooses the optimal level of inputs and maintains

it. However, when interaction exists, the current optimal decision depends on the

amount of other inputs. It is shown that adjustment then becomes gradual.

In this paper, we examine two-input cases, in which the inputs are called capital

and labor. Two decisions are called investment and employment. To give an

intuitive reason for gradual adjustment, consider the case where a firm’s attention is

alternately allocated to investment and employment. Suppose that capital and labor

are complements and that the amounts of capital and labor are less than optimal. In

this case, profits would be larger if the firm could increase both capital and labor at

the same time. Hence, when the firm makes its investment decision, it invests more
3This assumption is the same as the one that a firm must incur infinite fixed costs when more

than one decision is made. Hence, the model can be interpreted as a variant of a sunk cost model,

though the firm never incurs sunk costs.
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than needed for current production in order to increase the marginal product of labor

and to enhance employment in the next period. Similarly, when the firm makes its

employment decision, it employs more than needed for current production in order

to increase the marginal product of capital and to enhance its investment in the next

period. This capital and labor hoarding increases cost for current production. This

static loss plays the role of adjustment cost.

Similar to the Q theory of investment, the adjustment cost derived has the prop-

erty that the accumulated capital stock lowers the marginal cost of capital hoarding.

Hence, it causes a positive feedback mechanism that enhances the continuous ad-

justment of a firm: an increase in capital stock lowers the marginal cost of capital

hoarding, which gives more incentive to accumulate capital.

The following example is illustrative. Consider a firm that needs both an office

and skilled managers as productive inputs. When the firm constructs a building,

it will keep spare space. The spare space is not needed for current production, but

it allows the firm to employ and train more managers in future. Similarly, excess

trained managers are needed to set up a new office in a different region in the future.

Although the spare spaces prepare for future expansion, it is costly to build a sky-

scraper when a firm currently employs only three managers. In this way, adjustment

cost is endogenized. Note that once the firm employs 30 managers, it may be worth

constructing a building for them. That is, the existence of many skilled managers

as a result of the previous capital accumulation lowers the static loss due to capital

hoarding and enhances further capital accumulation.

The above adjustment process may not occur when a firm can optimally allocate

its attention. It may be optimal to stick to an employment decision. In this case,

because a firm does not need to hoard labor, there is no growth. This might happen

when the owner of a restaurant cares only about employing or training skilled chefs

but not about investing in a new restaurant.

A natural question is: What might be the conditions under which the firm starts
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its adjustment? This paper derives necessary and sufficient conditions for the firm

to adjust to the desired level under a constant-returns-to-scale production function.

Intuitively, the firmmust compare two types of rents: rent from changing its attention

and that from sticking to one decision. The firm starts its adjustment if and only if

the former rent is larger than the latter. We argue that when many workers quit a

job and a firm cannot accumulate skills, the firm sticks to employment and stops its

adjustment to the desired capital stock4.

Assuming that the condition for the adjustment is satisfied, this paper derives the

growth rate of a firm when the production function has constant returns to scale, there

is no adjustment cost function and markets are competitive. The derived growth

rate is shown to be a positive function of the modified user cost and the modified

wage rate, both of which are correlated with Tobin’s Q. It is shown that even if there

is no adjustment cost function and the production function has constant returns to

scale, Tobin’s Q can deviate from one and contains information about investment

opportunities.

The dynamics of investment have some empirical support. On the one hand,

because there is no convex adjustment cost function in our model, each investment

is lumpy, which is similar to a model with sunk cost. On the other hand, once

decisions are aggregated over time, the investment—capital ratio is independent of

the firm’s size and correlated with Tobin’s Q, which is similar to the Q theory of

investment. In contrast to the Q theory of investment, the correlation between the

derived investment—capital ratio and Tobin’s Q is imperfect. Our calibration results

show that the investment—capital ratio has a weak positive correlation with Q, but

once we control for the cash flow—capital ratio, the correlation becomes negative.

That is, the investment—capital ratio has a stronger positive relationship with the
4The results may interest readers for an alternative reason, because if a firm sticks to one decision,

it cannot reach the standard optimal solutions. It implies that the standard profit maximization

problem may not be a good approximation of reality if limited attention is important. The derived

condition clarifies when the standard model is valid.
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cash flow—capital ratio. The weak correlation between Q and investment is found in

the literature [e.g., Chirinko (1993)], and the robust impact of cash flow on investment

is also well known [e.g., Fazzari, Hubbard and Petersen (1988)].

Although we examine a model of limited attention, agents are perfectly rational,

which is different from Simon (1947). In our model, attention is required to im-

plement a plan. A similar strategy was previously used by Gifford (1992). She

investigated the role of limited attention on the growth of a firm in a dynamic pro-

gramming framework such as ours. However, Gifford (1992) does not investigate the

interaction among inputs and, therefore, adjustment is immediate5.

Investment decisions with complementary capital are investigated by Dixit (1997),

Eberly and Mieghem (1997) and Jovanovic and Stolyarov (2000). In particular,

Jovanovic and Stolyarov (2000) also produce spare spaces. However, their model

does not deal with the limited capacity of attention and, therefore, the source of

growth is exogenous movement of frontier technology.

This paper can be also interpreted as constructing a micro foundation for the

adjustment cost of investment. To our knowledge, the literature that derives the

adjustment cost of investment relies on gradual learning [e.g., Prescott and Viss-

cher (1980)]. This paper does not include an information problem but still derives

adjustment cost because hoarding behavior causes static losses.

Recently, Abel and Eberly (2003) proposed an investment model without an ad-

justment cost function. Similarly to ours, their model also predicts that Tobin’s Q

can be greater than one without adjustment cost, and the investment—capital ratio

is correlated with Tobin’s Q but not with marginal Q. In their model, investment
5More recently, some researchers investigated limited attention in a rational agent model to ex-

plain the stickiness of prices [Reis (2004)]. They describe limited attention by assuming information

processing friction . In contrast, this paper limits the number of decisions an agent can take im-

mediately. This strategy allows us to investigate interaction among inputs, which is the key to

deriving a positive feedback mechanism for capital accumulation. We hope that our strategy nicely

complements theirs.
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opportunities are provided by exogenous rent due to monopoly power or decreasing-

returns-to-scale technology. By contrast, our model does not need any exogenous

shocks and is based on constant-returns-to-scale technology and a perfectly compet-

itive market. Because the firm cannot optimize two inputs at the same time, there

is a fixed input at each moment that creates quasi-rent, which provides an incentive

for the firm to grow.

The paper is organized as follows. The next section examines the firm that

allocates its attention alternately to investment and employment decisions. This

exercise clarifies an intuitive mechanism to induce the dynamics of a firm. Section 3

analyzes the optimization of the allocation of attention. Section 4 investigates the

conditions under which the firm adjusts to the desired level. Assuming that the

firm satisfies the conditions for adjustment, Section 5 derives the growth rate of a

firm. Section 6 calibrates the model and discusses quantitative relationships between

investment, Q and cash flow in this model. Section 7 concludes and discusses possible

extensions.

2 The Alternate Allocation of Attention

In this section, we examine a standard firm’s profit maximization problem, except

that a firm can optimize only one input at a time. In order to illustrate our idea,

we assume that the firm alternates its attention. This assumption is relaxed in the

next section.

As a benchmark, we first consider a stylized static problem. A firm maximizes its

profits by choosing capital and labor given the wage rate, w, the user cost of capital,

u, and the production function F (K,L), where K is capital stock and L is labor

measured in efficiency units. Although we call K and L capital and labor for the

purpose of explanation, our mechanism works for any inputs.

Assuming that the production function is twice continuously differentiable, bounded,
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and strictly concave, and that the solutions are interior, it is known that the firm’s

decisions are characterized by two first-order conditions:

u = FK (K
∗, L∗) , w = FL (K

∗, L∗) ,

where K∗ and L∗ are the solutions to this static optimization problem. Since the

marginal products of capital and labor are equal to user cost and wage rates, the firm

has no incentive to change its decision.

One of the important assumptions behind this result is that the firm can maximize

labor and capital at the same time. However, this may not be true in reality. When

a firm invests, it must consider thousands of matters: which machine to buy, where

to set it, who should be assigned as an operator and so on. Our economic model

is abstracted from these details. However, it is natural to think that planning and

implementation are time consuming. More specifically, we assume that the firm can

optimize only one input at a time.

When the firm optimizes an input, another input is assumed to be constant. This

assumption aims to capture a role of routine operation. When the firmmakes optimal

decisions in investment, they presume that they maintain the same amount of labor

as before6. After investment is made, the previous level of labor may not be optimal.

However, as the previous level of labor is the result of past optimization, it would

be one of the best alternatives given the restriction of limited attention. In this

way, maintaining the same level can be interpreted as a very primitive description

of “remembering by doing” which Nelson and Winter (1982, p.99) emphasize as an

important function of a routine.

Given these assumptions, the standard problem must be rewritten as the following

dynamic programming problem:
6Note that we measure labor in efficiency units. Hence, labor is considered to be the set of skills

accumulated in a firm. The development of more skilled workers would demand time and attention.

However, it would be an innocuous assumption that the firm can maintain the same level of human

capital without attention.
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Vl (K) = max
L0∈R+

{F (K,L0)− wL0 − uK + βVk (L
0)} ,

Vk (L) = max
K0∈R+

{F (K 0, L)− wL− uK 0 + βVl (K
0)} ,

where β ∈ (0, 1) is a discount factor, and Vl (K) and Vk (L) are the value of the firm

when it currently makes an employment decision and when it currently makes an

investment decision, respectively. Because routinely chosen inputs are assumed to

be constant, when the firm makes an investment decision, labor is considered a stock

variable; when the firm makes an employment decision, capital is a stock variable.

Two first-order conditions are

FL (K,λ (K)) = w − βV 0k (λ (K)) , (1)

FK (κ (L) , L) = u− βV 0l (κ (L)) , (2)

where λ (K) and κ (L) are optimal policy functions. Compared with the first-order

conditions for simple static optimization, marginal cost deviates from input prices

because of the additional terms, βV 0k (λ (K)) and βV 0l (κ (L)). Because the current

investment decision (employment decision) can influence future profits, this possibility

must be taken into account. Hence, the marginal products of capital and labor must

be equal to input prices minus the effects on future profits. We call w− βV 0k (λ (K))

the modified wage rate and u− βV 0l (κ (L)) the modified user cost.

To illustrate the main idea, we assume that the value function is twice continuously

differentiable. Then it is shown that

λ0 (K) = − FKL (K,λ (K))

FLL (K,λ (K)) + βV 00k (λ (K))
, (3)

κ0 (L) = − FKL (κ (L) , L)

FKK (κ (L) , L) + βV 00l (κ (L))
. (4)

Because we assume a strict concave production function, the value functions are also

strictly concave. Therefore, the denominators of the two equations are negative. This
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means that both policy functions are strictly increasing functions when two inputs

are strict complements ( FKL (K,L) > 0 for all K and L ) and that they are strictly

decreasing functions when two inputs are strict substitutes (FKL (K,L) < 0 for all K

and L ). We assume that the production function is either strictly complementary

or strictly substitutionary. These assumptions are sufficient but not necessary for

our results, but it makes our explanation clearer.

Figure 1: The growth and decline of a firm

We are interested in the following dynamics:

Kt = κ (λ (Kt−1)) .
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Equations (3) and (4) imply that current capital stock is strictly increasing in the

previous capital stock if two inputs are either strict complements or strict substitutes.

Figure 1 depicts the dynamics of the firm, which are shown to be representative,

below. If the initial capital stock is lower than K∗, it grows and converges to K∗.

On the other hand, if the initial capital stock exceeds K∗, the firm declines and

converges to K∗. It is shown below that K∗ coincides with an optimal solution to

the static problem. Hence, the process of growth can be seen as the adjustment

process to the desired capital stock.

Note that if FKL (K,L) = 0 for allK and L, the derivative of the function κ (λ (·))

is 0. Hence, κ (λ (Kt−1)) in figure 1 is horizontal. This means that adjustment is

immediate. It shows that interaction between two inputs for some K and L is

necessary for gradual adjustment.

In order to understand the mechanism of the dynamics, two Euler equations are

derived:

MCLH (Lt, Lt−1) = MRLH (Lt) ,

MCKH (Kt,Kt−1) = MRKH (Kt) , where

MCLH (Lt, Lt−1) ≡ w − FL (κ (Lt−1) , Lt) , MRLH (Lt) ≡ β [FL (κ (Lt) , Lt)− w] ,

MCKH (Kt,Kt−1) ≡ u− FK (Kt,λ (Kt−1)) , MRKH (Kt) ≡ β [FK (Kt,λ (Kt))− u] .

MCLH (Lt, Lt−1) (MCKH (Kt,Kt−1) ) represents the marginal costs of labor hoard-

ing (capital hoarding); MRLH (Lt) ( MRKH (Kt) ) represents the marginal rent

from labor hoarding (capital hoarding). Euler equations show that it is optimal to

equate the marginal cost and marginal rent from hoarding. Since the intuitive logic

is the same, we confine our discussion mainly to capital. However, the reader can

apply the same logic to labor.

MCKH (Kt,Kt−1) is defined as the deviation of user cost from the marginal prod-

uct of capital. When user costs are larger than the marginal productivity of capital,
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the firm employs more capital than is needed for current production. Employing

one more unit of capital increases expenses by user cost and output by the marginal

product of capital. Hence, the deviation of user cost from the marginal productivity

can be considered the marginal cost of capital hoarding. Although we do not have

any adjustment cost function, the cost of capital hoarding serves as adjustment cost

in this paper.

On the other hand, hoarding capital generates a profit opportunity for the firm

in the next period, because when the firm invests in capital, it knows that capital is

fixed in the next period: it creates rent from capital. In order to increase this rent,

the firm has an incentive to invest more than needed. Employing one more unit of

capital increases output by the marginal product of capital and fixed cost by user

cost. Hence, the marginal rent from capital hoarding is the present value of this

difference, which is how MRKH (Kt) is defined.

When the firm reaches the steady state, K∗ and L∗, the firm keeps the same level

of capital stock and labor. Hence, there is no reason to maintain capital hoarding.

Substituting K∗ = Kt = Kt−1 and L∗ = Lt = Lt−1 into two Euler equations, it

is shown that capital and labor in the steady state are the same as under static

optimization:

FK (K
∗,λ (K∗)) = u, FL (κ (L

∗) , L∗) = w.

By taking the derivative with respect to K around the steady state, the slope of

κ (λ (K)) at the steady state in Figure 1 is shown to be less than one:

dκ (λ (K))

dK
|K=K∗ =

[FKL (K
∗,λ (K∗))]2

FKK (K∗,λ (K∗))FLL (K∗,λ (K∗))
∈ (0, 1) .

Since κ (λ (K)) is a strictly increasing function, figure 1 shows that the dynamics must

be globally stable. Hence, the dynamics depicted by figure 1 are representative.

In order to understand the mechanism of growth in detail, let us examineMRKH (Kt)

and MCKH (Kt,Kt−1). Because of the strict concavity of the production function,
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MCKH (Kt,Kt−1) is strictly increasing in Kt. Similarly, because MRKH (Kt) =

βV 0l (Kt) for all Kt and the value function is strictly concave, MRKH (Kt) is strictly

decreasing in Kt. Hence, the intersection is unique, which is depicted in Figure 2.

The dynamics occur becauseMCKH (Kt, Kt−1) depends onKt−1. We can derive

the following condition from the definition of MCKH (Kt,Kt−1):

∂MCKH (Kt, Kt−1)

∂Kt−1
= −FKL (Kt,λ (Kt−1))λ

0 (Kt−1) < 0.

Note that when FKL (K,L) > 0, λ
0 (K) > 0, while when FKL (K,L) < 0, λ

0 (K) < 0.

Hence, marginal cost declines as capital accumulates. This provides a nice positive

feedback mechanism: an increase in capital stock reduces the marginal cost of capital

hoarding, which generates incentive for the firm to make further investment. Figure 2

describes the feedback mechanism. IfMCKH (Kt,Kt−1) andMRKH (Kt) intersect

at a positive value, capital accumulates. Larger capital lowers the marginal cost of

capital hoarding and provides further incentive to accumulate capital. On the other

hand, if MCKH (Kt,Kt−1) and MRKH (Kt) intersect at a negative value, the firm

disinvests. This increases the marginal cost of capital hoarding and forces the firm

to give up more capital. Since MCKH (Kt, Kt−1) and MRKH (Kt) are equal to 0

when Kt = K
∗, the dynamics stop.

In the next section, we assume that the production function has constant returns

to scale in K and L and analyze the optimal allocation of attention. In the case of

constant returns to scale, the production function is not strictly concave, and therefore

there is no steady state in general. Without any proof, the dynamics and mechanism

of the growth of the firm with a constant-returns-to-scale production function are

depicted in Figure 3 and 4. Figure 4 shows that MRKH (Kt) is constant when the

production function has constant returns to scale. Hence, as Figure 3 shows, the

firm can grow as far as market conditions allow or can decline until it vanishes.
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Figure 2: The mechanism of growth and decline of a firm
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Figure 3: The growth and decline of a firm when the production function

has constant returns to scale
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Figure 4: The mechanism of the growth and decline of a firm when the

production function has constant returns to scale
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3 The Optimal Allocation of Attention

In the previous section, the order of decisions is given. However, the alternate allo-

cation of attention may not be optimal. Some firms may concentrate on training and

employing workers and not care much about new physical investment. In this sec-

tion, we relax this restriction and assume that the firm optimally chooses investment

or employment. This makes our analysis more complicated. In order to provide

a tractable model, we assume that F (K,L) exhibits constant returns to scale in K

and L. This assumption has other advantages, too. First, it allows us to link our

theory to Tobin’s Q. Second, since constant returns to scale and a competitive econ-

omy eliminate any economic rent, the only source of rent in this model becomes the

existence of quasi-fixed input due to routine operation. In this section we show that

the rent from the quasi- fixed factor causes Tobin’s Q to deviate from 1 7.

Let us first set up our model:

V (K,L) = max {Vl (K) , Vk (L;K)} , (5)

Vl (K) = β max
L0∈
h
0, αK
1−δl

i {F (K,L0)− wL0 + V ((1− δk)K, (1− δl)L
0)} , (6)

Vk (L;K) = max
K0∈

h
0, αL
1−δk

i {β [F (K 0, L)− wL+ V ((1− δk)K
0, (1− δl)L)]− pkI} ,(7)

s.t. I = K 0 −K,

where α < β = 1
1+i

and i is an interest rate. The parameters δk and δl are the

depreciation rate of capital and effective labor, respectively. The parameter pk is

the price of investment goods, and the price of output is normalized to 1. Equation

(5) describes the optimal choice of projects, where the projects are investment or

employment, and the value function V (K,L) represents the value of the firm when
7There is also a cost to assuming constant-returns-to-scale technology. As the production func-

tion is constant returns to scale in K and L, we must restrict our attention to the case of comple-

mentarity, below.
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the firm currently selects projects. The function Vl (K) represents the value of the

firm when the firm currently makes an employment decision, which is defined by

Equation (6) and the function Vk (L;K) represents the value of the firm when the

firm currently makes an investment decision, which is defined by Equation (7).

There are three technical differences from the previous section. First, we explicitly

model investment decisions in Equation (7) and exclude rental expenses of capital

from the model. The explicit expression of an investment decision clarifies the link

between investment and Tobin’s Q. The timing of discounting and depreciation

rate is arranged so we can later derive Jorgenson’s user cost. Second, we allow the

depreciations of capital and labor. The depreciation of labor is unusual. Since

we consider L as human capital rather than the number of workers, it has to be

interpreted as the depreciation rate of human capital in a firm. Finally, there are

explicit upper bounds on choice variables, which are influenced by α < β. This

guarantees that the solution does not explode and that there exists a unique value

function V (K,L). The proof is an application of Stokey and Lucas (1989, p87) and

we omit it8.

Since the production function has constant returns to scale, the value function is

expected to be linear in K, V (K,L) = Q (l)K where l = L
K
. Define the deviation

of Tobin’s Q from 1 by D (l) ≡
h
Q(l)
pk
− 1

i
pk. The standard guess and verify method

proves that D (l) must recursively satisfy the following equation:.

D (l) = βmax {πkl,πl}

πk ≡ max
k0∈[0,αk]

(
f (k0)− uk0 − w +D

Ã
1− δl

(1− δk) k0

!
(1− δk) k

0
)
, (8)

πl ≡ max
l0∈[0,αl]

(∙
f
µ
1

l0

¶
− w

¸
l0 − u+D

Ã
(1− δl) l

0

1− δk

!
(1− δk)

)
, (9)

where k0 = K0

L
, l0 = L0

K
, αk = α

1−δk , αl =
α

1−δl and f (·) = F (·, 1). The variable u

is Jorgenson’s (1963) user cost, u ≡ (i+ δk) pk. Variable, πk ( πl ) is the present
8Technically, it is also assumed that there is BF ∈ (0,∞), which satisfies |F (K,L)| ≤

BF (|K|+ |L|) for any K ∈ R+ and L ∈ R+.
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value of the stream of the discounted rent per unit labor (per unit capital) when

the firm currently makes an investment decision (employment decision). The rent

exists because there are quasi-fixed factors in the model. We call πk and πl the

average rent when the firmmakes an investment decision and an employment decision,

respectively.

Substituting the definition of D (l) into the definition of πk and πl, we can express

πk and πl as the solutions to the following two equations. The proof of the following

proposition is given in the Appendix.

Proposition 1 The deviation of Tobin’s Q from 1, D (l) =
h
Q(l)
pk
− 1

i
pk, is a function

of two measures of average rent, πk and πl :

D (l) = βmax {πkl,πl} ,

where πk and πl are the solutions to the following two equations:

πk = max {Πk (u− βkπl) ,Πk (u) + βlπk} (10)

πl = max {Πl (w − βlπk) ,Πl (w) + βkπl} . (11)

Πk (x) = max
k0∈[0,αk]

[f (k0)− xk0]− w (12)

Πl (x) = max
l0∈[0,αl]

∙
f
µ
1

l0

¶
− x

¸
l0 − u (13)

where βk = (1− δk)β and βl = (1− δl)β.

The function Πk (x) ( Πl (x) ) is the average instantaneous profit function when

the firm invests ( employs ) and maps from the prices for the variable inputs to

instantaneous profits per unit labor (per unit capital).

The proposition shows that Tobin’sQ can deviate from 1 whenmax {πkl,πl} is not

equal to 0 and that πk and πl are the maximums of different types of the average rent.

Let us explain the meaning of equation (10). We can apply the same arguments to

Equation (11). When the firm makes an investment decision and the next decision is

employment, the firm invests more than is needed for current production to increase
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the marginal product of labor at the next period. Because of this additional benefit,

the relevant user cost for this investment is the modified user cost, u − βkπl, which

is explained in Section 2. Hence, the average rent from changing its attention to

employment is Πk (u− βkπl). However, if the firm continues to invest during the

next period, there is no benefit from capital hoarding. Hence, the relevant user cost

is equal to Jorgenson’s. After maximizing profits, given an input price of u, the

firm expects to receive πk again at the next period. Hence, the average rent from

holding to an investment decision is Πk (u) + βlπk. Equation (10) shows that πk is

the maximum of the two types of the average rent.

The next section solves Equations (10) and (11), and derives the conditions under

which the firm alternates its attention and adjusts to the desired level.

4 When Does a Firm Adjust to the Desired Level?

This section investigates the condition under which it is optimal to alternate its

attention. Firstly, exploiting the benefits of stationarity, the sequential problem

expressed in Equations (10) and (11) is modified into a one shot problem. Let us

define Gl (πk), Gk (πl), Rl, and Rk as

Gl (πk) = Πl (w − βlπk) , Gk (πl) = Πk (u− βkπl) ,

Rl =
Πl (w)

1− βk
, Rk =

Πk (u)

1− βl
.

New functions Gl (πk) and Gk (πl) are mapping from πk to πl and πl to πk, respec-

tively. New variables Rl ( Rk ) are the present discounted value of the stream of rent

per unit capital (per unit labor) when the firm sticks to employment ( investment

). We call Rl and Rk the reservation value of average rents when the firm sticks to

employment and investment, respectively.

We define the following new problem:

πk = max {Gk (πl) , Rk} , (14)
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πl = max {Gl (πk) , Rl} . (15)

The new problem says that the firm adjusts to the desired level when the two average

rents from changing attention are larger than their reservation values. Since the

environment is stationary, this one shot problem is expected to be equivalent to the

original problem. Let π#k and π#l denote the solutions to Equations (10) and (11),

and let π∗k and π∗l denote the solutions to Equations (14) and (15). The following

lemma shows that the new problem is equivalent to the original one. The proof is

established in the Appendix.

Lemma 2 The solutions to Equations (10) and (11) are equivalent to the solutions

to Equations (14) and (15).

π∗l = π#l , π
∗
k = π#k .

The lemma permits us to work with Equations (14) and (15). In order to char-

acterize the conditions under which adjustment takes place, it is convenient to define

mappings Hl (πl) and Hk (πk) :

Hk (πk) = πk −Gk (Gl (πk)) , (16)

Hl (πl) = πl −Gl (Gk (πl)) . (17)

Let π∗∗k and π∗∗l denote the solutions to π∗∗k = Gk (π
∗∗
l ) and π∗∗l = Gl (π

∗∗
k ). Then

Hl (π
∗∗
l ) = 0, Hk (π

∗∗
k ) = 0. (18)

That is, the solutions to Equations (18) characterize the average rents when the firm

adjusts to the desired level. We first state the property of H - functions. The proof

is given in the Appendix.

Lemma 3 The functions Hl (·) and Hk (·) are strictly increasing and concave:

H 0
l (πl) > 0,H

0
k (πk) > 0 (19)

H 00
l (πl) ≤ 0, H 00

k (πk) ≤ 0. (20)

21



Since Lemma 3 shows that Hl (·) and Hk (·) are continuous and strictly increasing

functions, the existence and uniqueness of π∗∗l ( π
∗∗
k ) can be proved by showing that

for some small πl ( πk ), Hl (πl) < 0 ( Hk (πk) < 0 ) and for other large πl ( πk ),

Hl (πl) > 0 ( Hk (πk) > 0 ). The formal proof of the following theorem is given in

the Appendix.

Theorem 4 There exists a unique π∗∗l and π∗∗k .

Now, we are ready to provide conditions under which the firm alternates its at-

tention. The following theorem achieves this. The proof is established in the

Appendix.

Theorem 5 The firm alternates its attention and adjusts to the desired level, if and

only if Hl (Rl) < 0 and Hk (Rk) < 0:

Hl (Rl) < 0, Hk (Rk) < 0 iff π∗l = π∗∗l > Rl,π
∗
k = π∗∗k > Rk. (21)

Note that Hl (Rl) and Hk (Rk) are not influenced by endogenous variables. This

means that Theorem 5 characterizes technological and market conditions when the

firm adjusts to the desired level. The intuition behind this condition is explained as

follows. Note that

Hl (Rl) < 0, iff Rl < Gl (Gk (Rl)) , (22)

Hk (Rk) < 0, iff Rk < Gk (Gl (Rk)) . (23)

The left-hand side of Equation (22), Rl, is the average rent when the firm holds to em-

ployment decision from now on. The right-hand side of Equation (22), Gl (Gk (Rl)),

is the average rent when the firm holds to employment after the firm changes its

attention once. Since the environment is stationary, if the firm changes its attention

once, it will continue to do so. A similar interpretation is applied to Equation (23).

Hence, Theorem 5 says that when the benefit from a one-time change in its attention
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Figure 5: Hl (Rl)< 0,Hk (Rk)< 0: In this case, the firm alternates its attention

between investment and employment and adjusts to the desired level. The solid line

represents max {Gk (πl) , Rk} and max {Gl (πk) , Rl} and the intersection of the two

solid lines is the solution.
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is greater than sticking to the same decision for both investment and employment, it

is optimal for the firm to allocate its attention and make its adjustment.

A graphical explanation of this result is depicted in Figure 5. Note that Theorem

(5) is restated as

G−1l (Rl) < Gk (Rl) , G
−1
k (Rk) < Gl (Rk) , iff π∗l > Rl, π

∗
k > Rk.

The conditions, G−1l (Rl) < Gk (Rl) and G−1k (Rk) < Gl (Rk), are satisfied in Figure

5. The two solid lines represent max {Gk (πl) , Rk} and max {Gl (πk) , Rl}. Hence,

the intersection of the two solid lines is the solution to the original problem. As you

can see, π∗k > Rk and π∗l > Rl.

How do economic parameters influence the conditions for adjustment? Unfortu-

nately, changes in most of the parameters do not bring clear results. We compare the

average rent from sticking to one decision and that from changing attention. Most of

the parameters, such as w and u, influence both rents in the same direction. Hence,

the effect of w and u on the conditions for adjustment depends on which rents are

more influenced by w and u. However, a relatively simple condition is obtained for

the effect of the depreciation of labor.

Proposition 6 Suppose that the employment decision is solved by an interior solu-

tion. Then
dHl

³
Rl; δl

´
dδl

> 0.

The condition implies that the larger the depreciation, the more likely the con-

dition for adjustment is violated. As argued below, when the depreciation rate of

labor is large, the firm is likely to hold to the employment decision. A company

that cannot maintain human capital does not expect high profits from investment.

Hence, it must spend much time recruiting and training workers.

Note that there is an asymmetry between the depreciation of labor and capital

because the depreciation of capital also influences user cost, u. This additional effect
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obscures the result. If we can keep u constant, the effect of δk is similar to that of

δl.

When the firm holds to one decision, there are three possible cases: the firm

holds to investment, the firm holds to employment, or the firm’s attention depends

on the initial capital—labor ratio. The following theorem establishes the necessary

and sufficient conditions under which each case occurs. The proof is established in

the Appendix.

Theorem 7 Suppose Hl (Rl) ≥ 0 or Hk (Rk) ≥ 0.

Gl (Rk) > Rl, Gk (Rl) ≤ Rk, iff π∗l = Gl (Rk) > Rl, π
∗
k = Rk, (24)

Gl (Rk) ≤ Rl, Gk (Rl) > Rk, iff π∗l = Rl, π
∗
k = Gk (Rl) > Rk, (25)

Gl (Rk) ≤ Rl, Gk (Rl) ≤ Rk, iff π∗l = Rl, π
∗
k = Rk. (26)

Equation (24) shows the condition under which the firm holds to investment,

Equation (25) shows the condition under which the firm holds to employment and

Equation (26) shows the condition under which the allocation of attention depends

on the initial capital—labor ratio.

Figure 6, 7 and 8 provide the examples for each case. In figure 6, Hk (Rk) ≥ 0

( G−1k (Rk) ≥ Gl (Rk) ), Gl (Rk) > Rl, and Gk (Rl) ≤ Rk are satisfied. It shows

that π∗l = Gl (Rk) > Rl and π∗k = Rk. Since Gl (Rk) > Rl, when a firm makes an

employment decision, the next decision is investment. However, because Gk (Rl) ≤

Rk, once the firm makes an investment decision, it does not change its attention.

Hence, the firm holds to investment decisions.

In Figure 7, Hl (Rl) ≥ 0 ( G−1k (Rk) ≥ Gl (Rk) ), Hk (Rk) ≥ 0 ( G−1l (Rl) ≥ Gk (Rl)

), Gl (Rk) ≤ Rl and Gk (Rl) > Rk are satisfied. It shows that π∗l = Rl and π∗k =

Gk (Rl) > Rk. The condition Gk (Rl) > Rk means that when the firm makes an

investment decision, the next decision is employment; Gl (Rk) ≤ Rl means that once

the firm makes an employment decision, it does not change its attention. Hence, the

firm holds to employment.
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Figure 6: Hk (Rk)≥ 0,Gl (Rk)> Rl,Gk (Rl)≤ Rk: In this case, the firm holds to

investment. The solid line represents max {Gk (πl) , Rk} and max {Gl (πk) , Rl} and

the intersection of the solid lines is the solution.
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Figure 7: Hl (Rl)≥ 0,Hk (Rk)≥ 0,Gl (Rk)≤ Rl,Gk (Rl)> Rk: In this case, the

firm sticks to employment. The solid line represents max {Gk (πl) , Rk} and

max {Gl (πk) , Rl} and the intersection of the solid lines is the solution.

27



Figure 8: Hl (Rl)≥ 0,Hk (Rk)≥ 0,Gl (Rk)≤ Rl,Gk (Rl)≤ Rk: In this case, an ini-

tial capital—labor ratio determines the allocation of the firm’s attention. The solid

line represents max {Gk (πl) , Rk} and max {Gl (πk) , Rl} and the intersection of the

solid lines is the solution.
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Note that when the employment decision is solved by an interior solution, an

increase in the depreciation rate of labor lowersGl (Rk) and Rk, while it keeps Gk (Rl)

and Rl the same. Hence, it is likely that the large depreciation rate forces the firm

to hold to employment. This confirms our previous argument about the effect of a

change in the depreciation rate of labor.

In figure 8, Hl (Rl) ≥ 0 ( G−1k (Rk) ≥ Gl (Rk) ), Hk (Rk) ≥ 0 ( G−1l (Rl) ≥

Gk (Rl) ), Gl (Rk) ≤ Rl and Gk (Rl) ≤ Rk are satisfied. Because Gl (Rk) ≤ Rl and

Gk (Rl) ≤ Rk are satisfied, once the firm allocates its attention either to investment or

to employment, it never changes its attention. The allocation of the firm’s attention

depends on its initial capital—labor ratio. If its initial capital—labor ratio is large

enough, the marginal productivity of labor is larger than the marginal productivity

of capital and the firm holds to employment. If an initial capital—labor ratio is small

enough, the opposite is true: the firm holds to investment.

5 Investment and the Growth of a Firm

Suppose that Hl (Rl) < 0 and Hk (Rk) < 0. The firm alternates its attention. This

section derives the growth rate of the capital stock and discusses its property. Note

that

I

K
=

K 0

(1− δl)L0
(1− δl)L

0

K
− 1,

= κ (u− βkπ
∗
l ) (1− δl)λ (w − βlπ

∗
k)− 1,

where κ (·) and λ (·) are the optimal policy functions corresponding to Equations

(12) and (13), respectively. Using Hotelling’s lemma, the optimal policy functions

are related to the profit functions:

−κ (u− βkπ
∗
l ) = Π0k (u− βkπ

∗
l ) ,

−λ (w − βlπ
∗
k) = Π0l (w − βlπ

∗
k) .

The following theorem summarizes the above arguments.
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Theorem 8 Suppose that Hl (Rl) < 0 and Hk (Rk) < 0. Then the average invest-

ment is a decreasing function of the modified user cost and the modified wage rate:

I

K
= (1− δl)Π

0
k (u− βkπ

∗
l )Π

0
l (w − βlπ

∗
k)− 1. (27)

The theorem shows that the firm’s investment is fully determined by the modified

user cost and modified wage rate when δl = 0. Recall that these two measures of

average rents, π∗l and π∗k, have a clear relationship with Tobin’s Q:

Q (l)

pk
=

β

pk
max {π∗kl,π∗l }+ 1. (28)

Hence, Tobin’s Q is correlated with investment. However, the correlation between

growth rate and Tobin’s Q is indirect. This might explain the weak correlation

between investment and Tobin’s Q found in the literature. This point is examined

quantitatively in the next section.

Similarly to Abel and Eberly (2003), marginalQ is not correlated with investment.

Since the marginal cost of investment is pk in this model, if the solution is interior,

the marginal benefit of investment has to be pk. Hence, the marginal Q does not

have any connection to the investment decision. Although the marginal Q is not

informative, Tobin’s Q is still informative since it contains information about future

rent. This point is emphasized by Abel and Eberly (2003).

Note that investment is periodic. When the firm makes its employment decision,

there is no investment; when the firm makes its investment decision, the investment

is lumpy. Lumpy investment is consistent with evidence in Doms and Dunne (1998).

Equation (27) appears when we aggregate them over time.

Since Equation (27) shows gross investment, the net growth rate must take into

account the depreciation rate of capital stock. Note that

gk ≡
(1− δk)K

0

K
− 1

= (1− δk) (1− δl)κ (u− βkπ
∗
l )λ (u− βkπ

∗
l )− 1.

=
(1− δl)L

0

L
− 1 ≡ gl.
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Hence, the following corollary is immediate.

Corollary 9 Suppose that Hl (Rl) < 0 and Hk (Rk) < 0. The net growth rate of a

firm is

g ≡ gl = gk = (1− δk) (1− δl)Π
0
k (u− βkπ

∗
l )Π

0
l (w − βlπ

∗
k)− 1.

Corollary 9 shows that the growth rate is independent of firm size. We would like

to examine what influences the growth rate. Applying the implicit function theorem

to Equations (18), the following propositions are immediate.

Proposition 10 Suppose that Hl (Rl) < 0 and Hk (Rk) < 0. Then there exist

functions πl (w, u), πk (w, u) and g (w, u) such that

π∗l = πl (w, u) ,πl1 (w, u) < 0,π
l
2 (w, u) < 0,

π∗k = πk (w, u) ,πk1 (w, u) < 0,π
k
2 (w, u) < 0,

g = g (w, u) , g1 (w, u) ≤ 0, g2 (w, u) ≤ 0.

Moreover, assume that κ (u− βkπ
∗
l ) and λ (w − βlπ

∗
k) are interior solutions. Then

there exist functions, πlδ (δl, δk), πkδ (δl, δk) and gδ (δl, δk) such that

π∗l = πlδ (δl, δk) , π
lδ
1 (δl, δk) < 0, π

lδ
2 (δl, δk) < 0,

π∗k = πkδ (δl, δk) , π
kδ
1 (δl, δk) < 0, π

kδ
2 (δl, δk) < 0,

g = gδ (δl, δk) , g
δ
1 (δl, δk) < 0, g

δ
2 (δl, δk) < 0.

The results in the proposition are intuitive. Since an increase in wage rate, user

cost, the depreciation rate of capital stock and labor input all lower the average rents,

they lower the growth rate of the firm.

6 Calibration

In this section, we specify the production function and calibrate the model. This

exercise is aimed at examining the quantitative relationship between investment, To-

bin’s Q and cash flow. We assume that F (K,L) = z [θKρ + (1− θ)Lρ]
1
ρ , where
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ρ < 1. Before showing our calibration results, it may be instructive to look at

analytical solutions given this specification. For this purpose, we assume for the

moment that the solutions, κ (u− βkπ
∗
l ), λ (w − βlπ

∗
k), κ (u) and λ (w) are interior.

It is shown from Equations (14) and (15) that

π∗l = max

⎧⎨⎩ θ

(1− θ)
[w − βlπ

∗
k] [λ (w − βlπ

∗
k)]

1−ρ − u,
θ

(1−θ)w [λ (w)]
1−ρ − u

1− βk

⎫⎬⎭
π∗k = max

(
1− θ

θ
[u− βkπ

∗
l ] [κ (u− βkπ

∗
l )]

1−ρ − w,
1−θ
θ
u [κ (u)]1−ρ − w
1− βl

)

whereλ (p) =

"
θ

( p
z(1−θ))

ρ
1−ρ−(1−θ)

# 1
ρ

and κ (p) =

"
1−θ

[ pzθ ]
ρ

1−ρ−θ

# 1
ρ

for any p. The variables

π∗l and π∗k are the solutions of these two complex equations. If the conditions for

adjustment are satisfied, the following investment function is derived:

I

K
= (1− δl)

⎡⎢⎣ 1− θh
u−βkπl
zθ

i ρ
1−ρ − θ

⎤⎥⎦
1
ρ
⎡⎢⎣ θ³

w−βlπk
z(1−θ)

´ ρ
1−ρ − (1− θ)

⎤⎥⎦
1
ρ

− 1.

Note that after controlling u−βkπl and w−βlπk, z still has a positive impact on the

growth rate. This suggests that cash flow may positively influence investment after

controlling Q, which is examined quantitatively later.

Calibration: We assume that a firm makes decisions twice a year. Hence, the

derived investment is considered to be an annual value.

We assume that the price of investment goods, pk, is equal to 1 as a benchmark,

the depreciation rate of capital, δk, is 0.05 and the interest rate, i, is 0.08. This

means that user cost, u = 0.13 and β = 0.93. The interest rate, i = 0.08, implies

that the annual interest rate is equal to 0.1664, which is higher than the riskless

rate of return. This number corresponds roughly to an annual interest rate of 0.16,

which was assumed in Abel and Eberly (2002). They argued that the firm uses

risk-adjusted hurdle rates of return, which correspond to their number. We follow

their argument. Since we define L as the efficiency unit of labor, it is not clear what
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Table 1: Benchmark Parameters
w pk i δk θ δl α

1 1 0.08 0.05 0.3 0.1 1.07

might be a reasonable w. As a benchmark, we assume that w = 1. We also assume

that θ = 0.3, which means the capital share of 0.3 when the production function is

approximated by Cobb—Douglas (ρ = 0). For the depreciation of human capital, δl, is

assumed to be 0.1, which corresponds to an annual value of 19 percent9. We assume

that α = 1.07, which means α = 1
β
− 0.01. Table 1 summarizes our benchmark

parameters.

We have generated the investment—capital ratio, Tobin’s Q and cash flows for

several values of z and ρ, which largely influence investment behavior. For this

purpose, we first discuss what is the reasonable range of z and ρ. Since w is assumed

to be 1, we can estimate z from z =
h
θ
³
K
Y

´ρ
+ (1− θ)

³
wL
Y

´ρi− 1
ρ . Hence, we need to

know the reasonable range for ρ to find a reasonable range for z.

Berndt (1991, p455) reviews the literature and claims that empirical findings

from two-digit cross-sectional studies support a Cobb—Douglas production function

(ρ = 0), though time series estimates of the elasticity show a range of 0.3 to 0.5, which

roughly corresponds to the range of ρ = −1 to ρ = −2.3. However, these estimates

are not based on the efficiency unit. Krusell, Ohanian Ríos-Rull and Violante (2000)

estimate the elasticity of substitution between equipment and skilled labor as 0.67,

which corresponds to ρ = −0.5. From this evidence, we expect that a plausible range

of ρ is roughly 0 to −2.5.
9It is not clear what might be a reasonable number. One possible source of information about

the depreciation rate can be found from the separation rate between a firm and a worker. Yashiv

(2000) assumes that the separation rate is 1.7 percent a month, which corresponds to an annual

value of 19 percent. Christensen, Lentz, Mortensen, Neumann and Werwatz (2005) report that the

separation rate of managers in the largest firms is 22 percent, where managers are the group who

accumulate the most firm-specific human capital. These numbers provide a justification for our

assumption. In any case, our results do not change much by using other numbers.
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Using data from the National Income and Product Accounts, the capital—output

ratio in the U.S., K/Y , is roughly 2.11 in 2004. Assuming that the labor share,

wL/Y , is 0.7, the estimated value of z is 1.03 when ρ = 0 and 1.25 when ρ = −2.5.

Hence, we consider that a reasonable range of z is between 1 and 1.25.

For given ρ, we have generated 100 observations that correspond to different z

that increase by 0.0025 starting from 1. Hence, the maximum value of z is 1.2475.

The parameter ρ ranges from −7 to 0 in 0.5 intervals. Hence, we have 15 different

values of ρ. We have 1500 observations10. As we have argued, the plausible value

of ρ is expected to be greater than −2.5. However, we find that it is instructive to

report the results when ρ is less than −2.5.

Figures 9, 10 and 11 show our calibration results. Figure 9 shows the relationship

between the investment—capital ratio ( I/K ) and the productivity parameter ( z )

for the production functions with different elasticity of substitution between capital

and labor, ( 1
1−ρ ). When the production function is Cobb—Douglas ( ρ = 0 ), I/K is

constant at 0 or 0.205. The zero I/K means that the firm holds to an employment

decision in that range of z, while a positive constant value of I/K implies that the firm

grows and both investment decisions and employment decisions are constrained by

their upper bounds. In other words, when the production function is Cobb—Douglas

and the firm grows, there is no interior solution.

When ρ = −2, negative investment appears. The lower bound of I/K is −1,

which means that either the investment or employment decision is constrained by the

lower bound of 011. In this case, the firm immediately disappears. There is a range

of z that supports interior solutions with negative investment. However, interior

solutions with positive investment still do not appear. When ρ = −4, there is a
10Of course, strictly speaking, ρ and z must satisfy a certain relationship. For the purpose of this

exercise, the strict regulation is not particularly important. We allow the variation of ρ and z within

a certain range, which results in the heterogeneity of firms.
11Technically, we cannot allow 0 inputs. Hence, the lower bound is assumed to be 1 × 10−17,

which is approximately 0.
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Figure 9: The relationship between investment—capital ratio (I/K) and pro-

ductivity (z) for production functions with different elasticities of substi-

tutions between capital and labor ( 1
1−ρ).
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Figure 10: The relationship between Tobin’s Q and productivity (z) for

production functions with different elasticities of substitutions between

capital and labor ( 1
1−ρ): Tobin’s Q is calibrated by

π∗l
1+i
+ 1.
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Figure 11: The relationship between cash flow—capital ratio and productiv-

ity (z) for production functions with different elasticities of substitutions

between capital and labor ( 1
1−ρ): cash flow—capital ratio is calibrated by the

summation of z[θK
ρ+(1−θ)(L)ρ]

1
ρ−wL

K
for two consecutive periods.
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range of z that does support interior solutions that bring positive investment. When

ρ = −6, the range of z that supports interior solutions with positive investment

becomes larger. To summarize, we can generate interior solutions with positive

investment, but capital and labor must be more complementary than the estimates

within our plausible range. Possible extensions to mitigate this problem are discussed

in our conclusion.

Figure 10 demonstrates the relationship between Tobin’s Q and z. We report

Tobin’s Q when a firm makes an employment decision, which is denoted byQ
l(l)
pk

and

calibrated from π∗l
1+i
+ 1. For our range of parameters, there is no case for which the

firm will hold to an investment decision. Hence, every observation generates Ql(l)
pk
.

For all ρ, Tobin’s Q is close to 1 until z reaches a threshold. Above the threshold

level of z, Tobin’s Q expands greatly for a slight increase in z and deviates far from

1. Note that the threshold level of z coincides with that of z above which I/K

hits its upper bound in Figure 9. Once I/K hits its upper bound, an increase in

z cannot increase capital stock further, although it increases market value. That is

why Tobin’s Q becomes sensitive after I/K hits its upper bound.

Figure 11 shows the relationship between the cash flow—capital ratio and z for

the production functions with different ρ. The cash flow—capital ratio is calibrated

by the summation of z[θK
ρ+(1−θ)(L)ρ]

1
ρ−wL

K
for two consecutive periods. For all ρ, the

cash flow—capital ratio increases as z increases except for the region in which either

an employment decision or an investment decision has interior solutions that bring

positive investment. When the firm expands and has an interior solution, adjustment

cost is generated by static losses as explained before. These static losses make the

cash flow—capital ratio smaller. Once both decisions hit upper bounds, the firm

cannot increase investment any further. Hence an increase in z simply increases

output and therefore increases the cash flow—capital ratio.

In order to examine the effect of Tobin’s Q and cash flow on investment, we

conduct a simple regression using data generated from our calibration. Table 2
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Table 2: Regression on Investment—Capital Ratio:

ρ ∈ [−7, 0] ρ ∈ [−7, 0] ρ ∈ [−2.5, 0] ρ ∈ [−2.5, 0]

Q 0.079 -0.031 0.056 -0.020

(0.003) (0.001) (0.003) (0.003)

CASH/K 4.041 3.579

(0.040) (0.088)

Constant -0.429 -1.126 -0.270 -1.059

(0.013) (0.008) (0.017) (0.021)

Adjusted−R2 0.333 0.915 0.316 0.820

# of observation 1500 1500 600 600
Every coefficient is significant at a 0.5 % level.

reports our results. The first column shows that the investment—capital ratio is

positively correlated with Tobin’s Q. However, the coefficient and R2 is small. This

is consistent with evidence [e.g., Chirinko (1993)]. Moreover, once we include cash

flow, the coefficient on Tobin’s Q is negative and cash flow has a strong positive

effect on investment[ the second column]. The robust impacts of cash flow, after

controlling for Tobin’s Q, is found in the investment literature [e.g., Fazzari, Hubbard

and Petersen (1988)]. The results do not change even when we restrict our attention

to the observations with ρ ≥ −2.5. The calibration results show that our model can

generate stylized facts found in the literature.

7 Conclusion and Extensions

This paper applies a simple idea to investment theory: a person cannot make many

decisions at a time, but an organization needs millions of interrelated decisions. The

growth rate of the firm in our model is derived when the production function displays

constant returns to scale, there is no adjustment cost function and markets are com-

petitive. We show that each investment is lumpy, but adjustment is not immediate.
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Furthermore, the growth rate of a firm is independent of firm size and imperfectly

correlated with Tobin’s Q.

One drawback found in our calibration exercises is that in order to support an

interior solution that has positive investment, the model demands more complemen-

tarity than the estimates, which are expected to be plausible. This indicates that we

need some modifications for the purpose of empirical research. The current model is

designed to distinguish a novel mechanism for the growth of a firm from other models

in the literature. For this purpose, we make two extreme assumptions. First, we

completely dismiss any conventional adjustment costs. However, it is natural to think

that not only physical capital accumulation but also human capital accumulation is

likely to involve a certain adjustment cost. Incorporating these additional adjust-

ment costs makes it easier to support interior solutions. Second, we assume that

there is no price adjustment and that the production function has constant returns

to scale. When the production function displays constant returns to scale and there

is no price adjustment, an optimal decision should be on the boundary in a standard

static optimization. Hence, it is understandable to find many boundary solutions in

our model. This reasoning suggests that extension to a general equilibrium model

will make the model support interior solutions with more reasonable parameters. Al-

ternatively, the assumption of a decreasing-returns-to-scale production function will

also mitigate problems. These are interesting future extensions.

One may also object to our assumption on routine operation. We assume that

a firm maintains its previous level of input when it does not give any attention to

optimizing the input. However, it is clear that an alternative decision rule might be

possible. We also assume that a firm can costlessly change its routine if it wishes to do

so. Common observation tells us that this is not the case. Our assumptions should

be considered as simplifications to clarify the messages of our paper. However, we

believe that we point out important aspects of a routine: limited attention demands

routine operation, and routine operation causes rent, which can be both the source
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of growth and a barrier to change.

Developing more reasonable models of a routine is beyond the scope of this paper,

but it is also an interesting research agenda. We hope that our model can be extended

to incorporate more realistic features of a routine.

8 Appendix

The Proof of Proposition 1: We derive only Equation (10). Since the derivation

of Equation (11) is similar, we omit the proof. Substitute D (l) = βmax {πkl, πl}

into Equation (8),

πk = max
k0∈[0,αk]

{f (k0)− uk0 − w +max {βlπk, βkπlk0}} . (29)

Define π1k and π2k,

π1k = max
k0∈[0,αk]

[f (k0)− (u− βkπl) k
0 − w] ,

π2k = max
k0∈[0,αk],

[f (k0)− uk0 − w] + βlπk.

Note that if βlπk ≤ βkπlk, πk = π1k and if βlπk ≥ βkπlk, πk = π2k, where k is a

solution of Equation (29).

Suppose that argmaxk0∈[0,αk] [f (k
0)− [u− βkπl] k

0 − w] = k∗ and that βlπk ≥

βkπlk
∗. Then

π1k ≤ (k∗)− [u− βkπl] k
∗ − w ≤ f (k∗)− uk∗ − w + βlπk ≤ π2k.

Similarly, suppose that argmaxk0∈[0,αk] [f (k
0)− uk0 − w]+βlπk = k

∗ and that βlπk ≤

βkπlk
∗. Then

π2k ≤ f (k∗)− uk∗ − w + βlπk ≤ f (k∗)− [u− βkπl] k
∗ − w ≤ π1k.

Hence,

πk = max
n
π1k,π

2
k

o
.

41



Q.E.D.

The Proof of Lemma 2: We only prove π∗l = π#l . Since π
∗
k = π#k can be proved

by the same method, we omit its proof. Define R∗l (πk) such that

Gl (πk) = Πl (w) + βkR
∗
l (πk) . (30)

Note that πl ≥ R∗l (πk), if and only if Πl (w)+βkπl ≥ Gl (πk). Rearranging Equation

(30),

R∗l (πk) =
Gl (πk)− (1− βk)Rl

βk
.

Necessity: Suppose that πl = max {Gl (πk) ,Πl (w) + βkπl}. Suppose that πl ≥

R∗l (πk). Then πl = Rl. Hence, it is shown that

πl −R∗l (πk) =
Rl −Gl (πk)

βk
.

This means that πl ≥ R∗l (πk) and πl = Rl imply Rl ≥ Gl (πk) and πl = Rl. Similarly,

suppose that πl < R∗l (πk). Then πl = Gl (πk). Hence, it is shown that

πl −R∗l (πk) =
(1− βk) {Rl −Gl (πk)}

βk
.

This means that πl < R∗l (πk) and πl = Gl (πk) imply Rl < Gl (πk) and πl = Gl (πk).

Therefore, πl = max {Gl (πk) , Rl}.

Sufficiency: Suppose that πl = max {Gl (πk) , Rl}. Suppose thatGl (πk) ≤ Rl. Then

πl = Rl. Hence, it is shown that

Rl −Gl (πk) = βk [πl −R∗l (πk)] .

This means that Gl (πk) ≤ Rl and πl = Rl imply πl ≥ R∗l (πk) and πl = Rl. Similarly,

suppose that Gl (πk) > Rl. Then πl = Gl (πk). Hence, it is shown that

Rl −Gl (πk) =
βk

1− βk
[πl −R∗l (πk)] .

This means that Gl (πk) > Rl and πl = Gl (πk) imply πl ≥ R∗l (πk) and πl = Gl (πk).

Therefore, πl = max {Gl (πk) ,Πl (w) + βkπl}. Q.E.D.
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The Proof of Lemma 3: We prove H 0
l (πl) > 0 and H

00
l (πl) ≤ 0. Since H 0

k (πk) > 0

and H 00
k (πk) ≤ 0 is proved by the same method, we omit it.

H 0
l (πl) = 1− βkβlλ [w − βlGk (πl)]κ [r − βkπl] ≥ 1− β2α2 > 0,

where λ [·] is an optimal policy function of Equation (13) and κ [·] is an optimal policy

function of Equation (12).

H 00
l (πl) = −

h
G00l (Gk (πl)) [G

0
l (Gk (πl))]

2
+G0l (GK (πl))G

00
k (πl)

i
≤ 0.

The second inequality comes from the fact that Gl (·) andGk (·) are strictly increasing

and convex functions.

The Proof of Theorem 4: We prove the existence and uniqueness of π∗∗l . Since

the proof of the existence and uniqueness of π∗∗k is the same as that of π∗∗l , we omit

it. Note that Hl (πl) can be written as follows:

Hl (πl) = (1− βlβkκ (u− βkπl)λ (w − βlGK (πl)))πl +D (πl)

D (πl) ≡ u−

⎧⎪⎨⎪⎩ pf
³

1
λ(w−βlGK(πl))

´
− [(1 + βl)w − βl (pf (κ (u− βkπl))− uκ (u− βkπl))]

⎫⎪⎬⎪⎭λ (w − βlGK (πl)) .

Note that since λ (w − βlGK (πl)) and κ (u− βkπl) are bounded,D (πl) is also bounded

for any πl. Note also that 1 > βlβkκ (u− βkπl)λ (w − βlGK (πl)) for any πl because

of the constraints on choice variables. Hence, there exists large πl ∈ R such that

Hl (πl) > 0, and there also exists small πl ∈ R such that Hl (πl) < 0. Since Hl (πl)

is continuous and strictly increasing in πl, there exists an unique π∗∗l . Q.E.D.

The Proof of Theorem 5:

Necessity: Suppose that Hl (Rl) < 0 and Hk (Rk) < 0. Suppose that Gl (π∗k) ≤ Rl.

Then π∗l = Rl. Hence, π∗k = max {Gk (Rl) , Rk} and Gl (max {Gk (Rl) , Rk}) ≤ Rl.

0 > Rl − Gl (Gk (Rl)) ≥ Gl (max {Gk (Rl) , Rk}) − Gl (Gk (Rl)). Hence, Gk (Rl) >
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max {Gk (Rl) , Rk}. Contradiction. Similarly, suppose that Gk (π∗l ) ≤ Rk. Then

π∗k = Rk. Hence, π∗l = max {Gl (Rk) , Rl} and Gk (max {Gl (Rk) , Rl}) ≤ Rk.

0 > Rk − Gk (Gl (Rk)) ≥ Gk (max {Gl (Rk) , Rl}) − Gk (Gl (Rk)). Hence, Gl (Rk) >

max {Gl (Rk) , Rl}. Contradiction.

Sufficiency: Suppose that π∗l = π∗∗l > Rl,π
∗
k = π∗∗k > Rk. The result is immediate

from the following lemma.

Lemma 11

Hl (Rl) ≥ 0 iff π∗∗l ≤ Rl,

Hk (Rk) ≥ 0 iff π∗∗k ≤ Rk.

Proof. Note that since Hl (·) and Hk (·) are strictly increasing functions, the

result is obvious.

Q.E.D.

The Proof of Theorem 7:

Necessity: Note that from theorem 5, either π∗k = Rk or π
∗
l = Rl.

Suppose Gl (Rk) > Rl and Gk (Rl) ≤ Rk. Suppose that π∗k > Rk. Then π∗l =

Gl (π
∗
k) > Gl (Rk) > Rl. Contradiction. Hence, π

∗
k = Rk. Then π

∗
l = Gl (Rk) > Rl.

Suppose that Gl (Rk) ≤ Rl and Gk (Rl) > Rk. Suppose that π∗l > Rl. Then

π∗k = Gk (π
∗
l ) > Gk (Rl) > Rk. Contradiction. Hence, π∗l = Rl. Then π∗k =

Gk (Rl) > Rk.

Suppose that Gl (Rk) ≤ Rl and Gk (Rl) ≤ Rk. Suppose that π∗l = Rl. Then

π∗k = max {Gk (Rl) , Rk} = Rk. Suppose π∗k = Rk. π∗l = max {Gl (Rk) , Rl} = Rl.

Sufficiency:

Suppose π∗l = Gl (Rk) > Rl,π
∗
k = Rk. Then Gk (Rl) < Gk (π

∗
l ) ≤ Rk.

Suppose π∗l = Rl,π
∗
k = Gk (Rl) > Rk. Then Gl (Rk) < Gl (π

∗
k) ≤ Rl.

Suppose π∗l = Rl,π
∗
k = Rk. Then the result is obvious. Q.E.D.
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