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【Summary】This paper provides some small sample evidence on the appropriateness of ordinary least squares

(OLS) and instrumental variable (IV) estimators of the structural equation, and on the appropriate method of

performing hypothesis testing in event studies when generated variables are present. In event studies, the number

of observations used to estimate the auxiliary equations (and compute the generated variables) and the structural

equation can differ quite substantially. In certain circumstances, this means the appropriate estimator of the

structural equation is the IV estimator rather than OLS estimator. Some Monte Carlo suggests that an IV

estimator of the parameters of interest can lead to considerably smaller biases than the biases of the OLS

estimator. Sizes and powers of tests associated with the coefficient of the generated variable do not seem to be

affected by the presence of the generated variable. In contrast, the sizes of tests associated with the constant are

considerably distorted when the generated variable should be included in the structural equation.
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1. INTRODUCTION

In the typical examples of generated variables in

economics, the presence of generated variables

leads to errors that are serially correlated and

heteroscedastic causing estimators ignoring the

generated variables problem to be inefficient and

have problems with hypothesis testing [Pagan,

1986]. To rectify the problems with hypothesis

testing, Smith and McAleer’s [1994] Monte Carlo

evidence indicates that it is preferable to use test

statistics computed using the known form of the

covariance matrix of the estimators rather than

using Newey-West’s estimate of the covariance

matrix. In event studies, the presence of generated

variables usually only causes heteroscedasticity.

However, the number of observations used to

estimate the auxiliary equations (and compute the

generated variables) and the structural equation can

differ quite substantially. In certain circumstances,

this means the appropriate estimator of the

structural equation is the instrumental variable (IV)

estimator rather than the ordinary least squares

(OLS) estimator [see McKenzie and McAleer,

1998]. The purpose of this paper is to provide some

small sample evidence in an event study context on:

(a) the appropriateness of OLS and IV estimators of

the structural equation; and (b) the appropriate

method to take account of heteroscedasticity when

performing hypothesis testing. It is found that the

biases of OLS are quite considerable compared to

an IV estimator. The results for hypothesis testing

suggest that the impact of generated variables

differs depending on the parameter involved in the

hypothesis test.

2.  EVENT STUDIES

The equations estimated in a typical event study are

based on the market model. In the estimation
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window, this model can be stylised as follows:

,T,..,1=t,N,..,1=i,e+xβ+α=y ititiiit        (1)

where yit  is the rate of return on the ith firm’s

equity at time t, xit  is the rate of return on the

market portfolio at time t for the ith firm, and eit is

an error term　which is assumed to be independently

distributed with zero mean and variance σ2ei . In the

event window, it is assumed that 

,N,..,1=i

,e+Zδ+δ+xβ+α=y 1+iTi211+iTii1+iT         (2)

where Z i  is a characteristic of firm i. In (2), the

null hypotheses of interest are 0=δ1  and 02 =δ ,

that is, the announcement at time T+1 has no impact

on the firm’s rate of return.  

Typically, (1) is estimated by OLS for each i to

obtain estimates of αi  and　βi , Ai  and Bi . These

estimates are then used to rewrite (2) as

.N,..,1=i,x)B-β(+)A-α(+

e+Zδ+δ=xB-A-y

1+iTiiii

1+iTi211+iTii1+iT  (3)

Equation (3) (or (2)) is referred to as the structural

equation and (1) is referred to as the auxiliary

equation (or first stage model). When Zi  is

observed, this is a standard event study model.

However, as McKenzie and McAleer [1998]

observe, quite often the explanatory variables used

in event studies are generated in some way. In this

paper, analysis is focused on the case where

β=Z ii  [see McKenzie and McAleer, 1998, Table 1

for some examples]. Since the explanatory variable

Zi  is unobservable, it needs to be estimated say as

Bi . In this case, (3) can be rewritten as

,BxBAy 1iTi211iTii1iT λ+δ+δ=−− +++       (4)

).δ+x()B-β(+)A-α(+e=λ 21+iTiiii1+iT1+iT     (5)

It should be noted that the regressor in (4) will be

correlated with the error term given in (5) since

,V/)x-δ+x(σ=)λB(E xi

_

i21+iT
2
ei1+iTi          (6)

where ,T/∑ x=x T
1=t it

_

i  and )∑ x-x(=V 2T
1=t

_

iitxi .

As ,T ∞→  ∞→Vxi  so that .0↓)λB(E 1+iTi

That is, the correlation disappears as the number of

observations used at the first stage goes to infinity.

In addition, λ 1+iT is heteroscedastic with variance 

]V/)x-δ+x(+)T/1(+1[σ=)λ(E xi
2

_

i21+iT
2
ei

2
1+iT .(7)               

As ,T ∞→  .σ↓)λ(E 2
ei

2
1+iT  That is, the form of the

heteroscedasticity simplifies greatly as the number

of observations used at the first stage goes to

infinity. As δ2  increases in size, both the

correlation between the regressors and the error in

(4), and the degree of the heteroscedasticity can be

expected to increase.

Given the heteroscedasticity of the error in (4)，it is

natural to consider a GLS transformation of (4):

.w/λ+w/Bδ+w/δ

=w/)xB-A-y(

i1+iTii2i1

i1+iTii1+iT  (8)

Three choices of wi  are considered: (A) σei ;

(B) ;]V/)x-x(+)T/1(+1[σ

2/1
xi

2
_

i1+iTei and

(C) ]V/)x-δ+x(+)T/1(+1[σ

2/1
xi

2
_

i21+iTei . Choice

(A) ignores both the heteroscedasticity arising from

the presence of generated variables in both the

dependent and explanatory variables. Choice (B)

ignores the heteroscedasticity arising from the

presence of generated variables in the explanatory

variables. OLS applied to (8) with one of these three

wi  is referred to as GLS1，GLS2 and GLS3,

respectively. The required estimate of  σei  is

obtained from the OLS estimates of （1）, and the
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OLS estimate of δ2  from (4) is used to compute

GLS3.

The correlation between the regressors and the error

term in (4) prompted McKenzie and McAleer

[1998] to suggest that it may be more appropriate to

estimate (4) using an IV estimator rather than OLS.

The difficulty with IV estimation is finding an

appropriate instrument for Bi . In their empirical

example, McKenzie and McAleer [1998] use the

rank of Bi  as an instrument. This estimator is

denoted as IV1. Here, an estimate of βi based on a

sample prior to the estimation window is also used,

and this estimator is denoted by IV2. IV is also

applied to the three choices of wi  in (8) for the

two sets of instruments to give estimators denoted

as IV1-G1, IV1-G2，IV1-G3, IV2-G1, IV2-G2, and

IV2-G3, respectively.

Variances of the OLS estimator are also computed

assuming homoscedasticity, and heteroscedasticity

with the assumed variance of the errors in (4) being:

(A) σ2ei ; (B) ];V/)x-x(+)T/1(+1[σ xi
2

_

i1+iT
2
ei and

(C) ].V/)x-δ+x(+)T/1(+1[σ xi
2

_

i21+iT
2
ei  Tests

using these variance estimators are denoted HOM,

HET1, HET2 and HET3, respectively.

Heteroscedastic-consistent estimates of the

variances of the OLS estimator are also computed

using White’s estimator and tests using this

estimator are denoted WHITE. For IV1 and IV2,

corresponding estimates of the variances are also

used computed to compute test statistics.

3.  MONTE CARLO EXPERIMENT

In examining the finite sample performance of

estimators and test statistics used in event studies, it

is quite common to use actual returns data for both

the firm’s return and the market return [see Binder,

1998]. In contrast, in this paper the data are

generated artificially.

The market returns, xit , are generated as a first-

order autoregression

,v+xρ=x it1-itit

with ).σ,0(niid~v 2
vit  The values of ρ and σ2v are

set at 0.2=ρ  and 0.1=σ2v to loosely replicate the

daily returns on the Japanese Nikkei index in 1996.

In (1)， ,i∀0=αi βi are generated from a uniform

distribution over the range (0,1), and σ2ei are

generated from a uniform distribution over the

range (0.5, 1.0). In any one experiment, the values

of βi , σ2ei  and xit  are fixed. Observations on

yit are generated for i=1,..,N according to (1) for

t=-(T-1),..,T, and according to (2) with β=Z ii  for

t=T+1 assuming the eit  are normally distributed.

Observations t=-(T-1),..,0 are used to obtain the

estimates of βi  used as instruments in the

estimator IV2. The observations t=1,..,T are used as

the estimation window.  In (2), 0.0=δ1 and δ2
takes the values 0.0, 0.1, 0.5, 1.0 and 5.0. The

number of observations was varied as N=30，60,

100, and T=30，60. For each experiment, the

number of replications is 5000. Therefore, the

maximum standard errors of the type 1 errors and

rejection frequencies are [0.5(1-

0.5)/5000 ] 5.0 =0.007. The nominal sizes of all tests

are set equal to 5%.

4.  RESULTS

Table 1 presents estimates of the biases of various

estimators of δ2  for various values of δ2 , N and

T. Results for GLS2, IV1-G2 and IV2-G2 are not

presented because they are very similar to the

results for GLS1, IV1-G1 and IV2-G1, respectively.

The important finding from Table 1 is that the

biases of IV2 and IV2-G1 are considerably smaller
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than the biases for the other estimators when

0≠δ2 . Surprisingly, the IV estimator using the

rank of Bi  as an instrument for Bi does not

perform any better than the OLS estimator. For the

OLS and IV1 related estimators, (a) for 0>δ2 as

δ2  increases, the biases increase; (b) for δ2 =0.5

and 1.0 as T increases, the biases fall; and (c) the

impact of increasing N is mixed. Although not

reported in detail to save space, a similar pattern of

biases is observed for the corresponding estimators

of δ1 .

Table 1: Bias of Estimators of δ2

__________________________________________________________________________________

T=30 OLS GLS1 GLS3 IV1 IV1-G1 IV1-G3 IV2 IV2-G1 IV2-G3

__________________________________________________________________________________

N δ2
30 0.0 -0.0005 -0.0045 -0.0049 -0.0069 -0.0112 -0.0110 -0.0033 0.0010 -0.0112

0.1 -0.0205 -0.0238 -0.0212 -0.0189 -0.0220 -0.0214 0.0001 -0.0040 -0.0203

0.5 -0.0912 -0.0903 -0.0861 -0.0896 -0.0856 -0.0793 0.0216 0.0109 -0.0822

1.0 -0.2291 -0.2136 -0.2028 -0.2239 -0.1966 -0.1887 0.0205 0.0198 -0.1872

60 0.0 0.0598 0.0601 0.0558 0.0618 0.0631 0.0617 -0.0076 -0.0069 0.0605

0.1 -0.0536 -0.0456 -0.0445 -0.0412 -0.0383 -0.0378 0.0068 0.0063 -0.0378

0.5 -0.1034 -0.1117 -0.1082 -0.0901 -0.0941 -0.0931 0.0047 0.0060 -0.0937

1.0 -0.1798 -0.1833 -0.1746 -0.1644 -0.1690 -0.1639 0.0086 0.0053 -0.1669

100 0.0 0.0534 0.0488 0.0468 0.0432 0.0376 0.0368 0.0008 0.0012 0.0362

0.1 -0.0398 -0.0331 -0.0332 -0.0440 -0.0406 -0.0407 0.0004 -0.0012 -0.0403

0.5 -0.0969 -0.1017 -0.0972 -0.0819 -0.0859 -0.0851 0.0037 0.0044 -0.0849

1.0 -0.2287 -0.2211 -0.2120 -0.2171 0.2131 -0.2061 -0.0021 -0.0002 -0.2079

T=60

N δ2
60 0.0 -0.0099 -0.0105 -0.0103 -0.0129 -0.0151 -0.0148 -0.0087 -0.0100 -0.0144

0.1 -0.0333 -0.0272 -0.0266 -0.0302 -0.0260 -0.0255 0.0014 0.0007 -0.0257

0.5 -0.0641 -0.0630 -0.0610 -0.0599 -0.0618 -0.0603 -0.0010 -0.0005 -0.0603

1.0 -0.1372 -0.1328 -0.1298 -0.1266 -0.1240 -0.1220 -0.0002 -0.0017 -0.1230

__________________________________________________________________________________

Estimates of the type 1 errors for t-tests of the null

hypothesis of 0=δ2 for the OLS and IV2

estimators using various estimates of the covariance

matrix are presented in Table 2. For IV2, in all but

one case the estimated type I errors are not

significantly different from the nominal size of the

test. Despite the presence of heteroscedastic errors,

t-tests based on an estimate of the covariance matrix

assuming homoscedasticity (HOM) perform well.

For the OLS estimator, test statistics computed

using information about the known form of the

heteroscedasticity (HET2 and HET3) always have

type 1 errors close to their nominal size. 

Rejection frequencies of the false null hypothesis of

0=δ2 are presented in Table 3. For most
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combinations of N, T and δ2 , there is little difference in the rejection frequencies across the 

Table 2: Type 1 Errors for t-tests of the Null Hypothesis 0=δ2  (Nominal size =5%)

_________________________________________________________________________________________

OLS IV2

_______________________________________ ______________________________________

T N HOM White HET1 HET2 HET3 HOM White HET1 HET2 HET3

__________________________________________________________________________________________

30 30 0.0698* 0.0758* 0.0626 0.0534 0.0508 0.0582 0.0726* 0.0606 0.0508 0.0460

30 60 0.0576 0.0662* 0.0642* 0.0574 0.0554 0.0448 0.0600 0.0634 0.0526 0.0468

30  100 0.0578 0.0620 0.0634 0.0556 0.0552 0.0438 0.0524 0.0576 0.0472 0.0466

60  60 0.0522 0.0610 0.0482 0.0454 0.0448 0.0518 0.0596 0.0508 0.0476 0.0466

__________________________________________________________________________________________

Note: A * indicates the value is significantly different from 0.05. 

Table 3: Rejection Frequencies for t-tests of the Null Hypothesis  0=δ2  (Nominal size =5%)

________________________________________________________________________________________

OLS IV2

_______________________________________ ______________________________________

T=30 HOM White HET1 HET2 HET3 HOM White HET1 HET2 HET3

N   δ2
30 0.1 0.0654 0.0772 0.0602 0.0536 0.0498 0.0540 0.0652 0.0596 0.0520 0.0476

 0.5 0.1328 0.1446 0.1274 0.1118 0.1048 0.1080 0.1292 0.1190 0.1056 0.0916

1.0 0.3768 0.4078 0.4066 0.3890 0.3746 0.3822 0.4110 0.4322 0.4120 0.3944

60 0.1 0.0578 0.0682 0.0616 0.0546 0.0532 0.0488 0.0614 0.0578 0.0516 0.0466

0.5 0.2228 0.2328 0.2398 0.2196 0.2128 0.2092 0.2140 0.2270 0.2096 0.1986

1.0 0.6014 0.6032 0.6268 0.6046 0.6018 0.5224 0.5276 0.5418 0.5196 0.5136

100 0.1 0.0660 0.0668 0.0678 0.0598 0.0586 0.0620 0.0678 0.0702 0.0600 0.0578

0.5 0.2984 0.2948 0.3148 0.2852 0.2828 0.2630 0.2646 0.2850 0.2570 0.2512

1.0 0.8196 0.8168 0.8402 0.8234 0.8208 0.8160 0.8190 0.8350 0.8190 0.8164

T=60

N   δ2
60 0.1 0.0558 0.0592 0.0564 0.0518 0.0512 0.0606 0.0690 0.0654 0.0590 0.0574

0.5 0.2146 0.2186 0.2114 0.2024 0.2000 0.2048 0.2074 0.2040 0.1948 0.1900

1.0 0.6930 0.6960 0.7100 0.6968 0.6908 0.7198 0.7154 0.7326 0.7204 0.7156

___________________________________________________________________________________________

two estimators and the five estimates of the

covariance matrix. This is perhaps a little surprising

given the large differences in the biases of the OLS

and IV2 estimators observed in Table 1. As is

expected when δ2  increases, the rejection

frequencies increase. For δ2 =0.5 and 1.0 as T

increases, the rejection frequencies fall. Again

increases in N have a mixed impact.

Rejection frequencies for t-tests of the true null

hypothesis 0=δ1 when the value of δ2  is varied

are displayed in Table 4.  Since the null hypothesis

is true, these rejection frequencies should be close



7

to the nominal size of the test，0.05. For many of the

test statistics using the OLS estimator，it is found

that the rejection frequencies are significantly

higher than 0.05. For the IV estimates, the only

estimates of the covariance matrix that consistently

give test statistics with rejection frequencies that are

not significantly different from 0.05 are HOM and

HET3.
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Table 4: Rejection Frequencies for t-tests of the True Null Hypothesis 0=δ1  (Nominal Size =5%)

_________________________________________________________________________________________

OLS IV2

_______________________________________ ______________________________________

T=30 HOM White HET1 HET2 HET3 HOM White HET1 HET2 HET3

N   δ2
30 0.0 0.0674* 0.0750* 0.0622 0.0546 0.0530 0.0638 0.0736* 0.0640 0.0544 0.0500

1.0 0.0730* 0.0962* 0.0816* 0.0766* 0.0746* 0.0490 0.0684* 0.0664* 0.0578 0.0492

5.0 0.2824* 0.3094* 0.4120* 0.3916* 0.2948* 0.0594 0.0724* 0.1460* 0.1344* 0.0504

60 0.0 0.0618 0.0686* 0.0614 0.0518 0.0502 0.0458 0.0612 0.0562 0.0476 0.0046

1.0 0.0728* 0.0842* 0.0816* 0.0732* 0.0710* 0.0516 0.0606 0.0642* 0.0562 0.0490

5.0 0.6646* 0.6998* 0.8350* 0.8232* 0.6898* 0.0530 0.0582 0.1794* 0.1676* 0.0466

100 0.0 0.0562 0.0618 0.0644* 0.0574 0.0568 0.0502 0.0576 0.0600 0.0522 0.0506

    1.0 0.1208* 0.1258* 0.1346* 0.1226* 0.1210* 0.0542 0.0566 0.0660* 0.0586 0.0522

    5.0 0.8422* 0.8658* 0.9410* 0.9324* 0.8684* 0.0430 0.0560 0.1562* 0.1396* 0.0480

T=60

N   δ2
60 0.0 0.0572 0.0634 0.0534 0.0512 0.0506 0.0556 0.0622 0.0532 0.0508 0.0484

1.0 0.0710* 0.0778* 0.0724* 0.0680* 0.0654* 0.0582 0.0652* 0.0614 0.0570 0.0512

5.0 0.2044* 0.2214* 0.3068* 0.2966* 0.2128* 0.0476 0.0548 0.1000* 0.0958* 0.0430

___________________________________________________________________________________________

Note: A * indicates the value is significantly different from 0.05. 
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