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1 Introduction

Economic agents often take actions based on a misspecified view about the world:
A worker may be overconfident about his own capability, a firm may incorrectly
assume that the demand function is linear in prices (in reality, the demand is
non-linear), an investor may incorrectly believe that the economy is driven by
fewer variables, and so on.1 Recent literature on model misspecification studies
how such a bias influences the agents’ behavior and payoffs, assuming either a
single-agent setup or a multi-agent setup in which the agents’ misspecifications
are common knowledge (e.g., Esponda and Pouzo, 2016; Heidhues, Kőszegi, and
Strack, 2018; Ba and Gindin, 2021). However, this common knowledge assump-
tion leaves out many potential applications, as it does not allow players’ higher-
order misspecification. For example, when a worker is overconfident about his
own capability, his colleague may not be aware of it; in this case, this colleague
has a misspecified view about the opponent’s view about the world. This paper
proposes a general model which allows for such higher-order misspecification,
and studies its economic consequences.

Specifically, we consider an infinite-horizon game in which players take ac-
tions each period and learn an unknown state from public signals over time. Play-
ers are Bayesian and maximize the expected payoffs just as in the standard game-
theoretic model, but they evaluate information using misspecified models. We
assume myopic players in order to rule out the folk-theorem type result.2 Actions
are unobservable. Our goal is to understand how a misspecified player behaves
differently than the unbiased player in the long run, and how it influences the
behavior of other players.

Why should we be interested in the long-run behavior of misspecified players,

1As experimental and empirical evidence, people exhibit overconfidence in strategic entries
(Camerer and Lovallo, 1999), corporate investments (Malmendier and Tate, 2005), and merger
decisions (Malmendier and Tate, 2008). See Daniel and Hirshleifer (2015), Malmendier and Tate
(2015), and Grubb (2015) for reviews of the literature.

2Our results are valid even for forward-looking players by assuming that they play a Markov
perfect equilibrium.
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rather than an equilibrium in a one-shot model? When players have a misspecified
view about the world, they observe outcomes which are systematically different
from the anticipation. Accordingly, it is likely that they eventually change the be-
lief about some economic variable. For example, if a firm is persistently overcon-
fident about some aspect of the demand function (e.g., the intercept of the inverse
demand curve), on average, actual prices are lower than the firm’s anticipation.3

After a long time, this firm becomes (unrealistically) pessimistic about other as-
pect of the demand (e.g., the slope of the inverse demand curve). Similarly, in
tournaments, if an agent is persistently overconfident about her own capability,
after a series of unexpected losses, she may think that the tournament is unfair.
Our framework is useful to understand players’ long-run behavior in these cases,
and we show that this learning feature has a substantial impact on the equilibrium
outcomes in various applications.

In Section 2, we consider a benchmark case in which there is no higher-order
misspecification. Specifically, we assume that players have first-order misspecifi-
cation only, in that they may have misspecified views about the physical environ-
ment and these first-order beliefs about the environment are common knowledge.
This setup covers a wide range of applications, such as Cournot duopoly with mis-
specified demand and team production with overconfidence/prejudice. We show
that players’ beliefs and actions converge to a steady state under some condi-
tion, and then characterize how one’s misspecification influences the steady-state
outcomes. A novelty here is that we quantify the impact of misspecification on
the steady-state outcomes, which allows us to discuss how each parameter of the
model influences the equilibrium outcome, and how strategic interaction ampli-
fies/reduces the impact of misspecification. For example, our result implies that
in any symmetric game, both strategic substitutes and strategic complements am-

3Recent evidence suggests that overconfidence can be persistent: Hoffman and Burks (2020)
find that workers are persistently overconfident about their own productivity, and Huffman, Ray-
mond, and Shvets (2019) find that managers are persistently overconfident about future perfor-
mance. In a laboratory experiment, Grossman and Owens (2012) report that subjects’ responses
are consistent with Bayesian updating and overconfident prior beliefs, but overconfidence about
their ability is persistent in the face of repeated feedback.
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plify the impact of first-order misspecification.
Then in Section 3, we consider a model with higher-order misspecification.

There are many types of higher-order misspecification we can think of, and here
we focus on a particular one which seems economically relevant.4 Specifically,
we assume that each player may have a misspecified view about the physical en-
vironment as in the case of first-order misspecification, and on top of that, each
player naively thinks that the opponent has the same view. In this setup, players
are not aware of the opponent having a different view about the world; they think
that their view about the world is absolutely correct. This describes, for exam-
ple, a worker who is unaware of a bias of his colleague. We find that even with
such higher-order misspecification, players’ beliefs and actions still converge to
a steady state under an additional assumption. We then quantify how one’s mis-
specification influences this steady-state outcome.

In Section 4, we apply these results to more specific examples. We find that
the presence of higher-order misspecification (i.e., unawareness of the opponent’s
bias) can have a significant impact on the equilibrium outcome. For example,
when Alice and Bob work on a joint project, it is possible that Bob’s overconfi-
dence (about his own capability) improves his equilibrium payoff if his overcon-
fidence is common knowledge, but reduces his payoff if Alice is not aware of the
overconfidence. A point is that when Alice is unaware of Bob’s overconfidence,
she faces inferential naivety in that she makes an incorrect prediction about Bob’s
action. Accordingly, she may take an action different from the one she would take
if Bob’s overconfidence was common knowledge, which may result in a qualita-
tive difference in equilibrium payoffs.

We also find that our framework of higher-order misspecification is useful to
explain bias transmission. In Section 4.3, we consider a teacher who has a bias
against a particular type of students (e.g., female students). We show that the
teacher’s bias can endogenously induce these students’ negative self-stereotypes,

4We propose a general model of higher-order misspecification in Appendix A. In Appendix
C, we present the analysis of different types of higher-order misspecification, as well as other
applications such as a tournament.
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if the students are not aware of the teacher’s bias.
Section 5 summarizes the related literature and concludes. Appendix A presents

a general model and characterize the asymptotic behavior of players’ actions and
beliefs, which is useful to prove the convergence theorems in the main text. Ap-
pendix B provides proofs. Appendix C presents other types of misspecification,
additional convergence results, and other applications. Appendix D checks con-
vergence of long-run beliefs in each example covered in the main text.

2 First-Order Misspecification

2.1 Setup

There are two players i = 1,2 and infinitely many periods t = 1,2, · · · . At the
beginning of the game, an unobservable economic state θ ∗ is drawn from a closed
interval Θ = [θ ,θ ], according to a common prior distribution µ ∈ 4Θ. In each
period t, each player i has a belief µ t

i ∈ 4Θ about θ , and chooses an action xi

from a closed interval Xi = [0,xi]. Player i’s action xi is not observable by the
other player j , i. Given an action profile x = (x1,x2), the players observe a noisy
public signal y = Q(x1,x2,a,θ ∗) + ε , where a ∈ R is a fixed parameter which
describes a physical environment (e.g., a parameter which determines a market
demand) and ε is a random noise whose distribution is N(0,1). Each player i
receives a payoff ui(xi,y). Both Q and ui are twice continuously differentiable.

We assume that one of the players (player 2) has a biased view about the
parameter a, while the other player is unbiased and knows the parameter a. We
call it first-order misspecification, because player 2 has an incorrect first-order
belief about the parameter a. Specifically, consider the following information
structure:

• Player 1 believes that for each parameter θ , the signal y is given by y =

Q(x1,x2,a,θ)+ ε .

• Player 2 (incorrectly) believes that for each parameter θ , the signal y is
given by y = Q(x1,x2,A,θ)+ ε , where A , a.
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• The above beliefs are common knowledge (i.e., player 2 believes that player
1 believes that y = Q(x1,x2,a,θ)+ ε , and the like).

Player 1’s subjective expected stage-game payoff given an action profile x and
a state θ is

U1(x,θ) = E[u1(x1,Q(x,a,θ)+ ε)]

and player 2’s subjective expected stage-game payoff is

U2(x,A,θ) = E[u2(x2,Q(x,A,θ)+ ε)],

where the expectation is taken with respect to ε . Note that player 2 evaluates pay-
offs given her subjective signal distribution Q(x,A,θ)+ε . To economize notation,
we will write U2(x,θ) instead of U2(x,A,θ) when it does not cause a confusion.

We assume that players play a static Nash equilibrium every period. This
essentially means that in our model, (i) players are myopic, and (ii) they predict
the opponent’s play correctly and best-respond to it. Condition (i) shuts down the
repeated-game effect, so that a result similar to the folk theorem (which is not of
our interest) does not arise.5 Condition (ii) implies that players recognize that the
opponent also learns the state and changes the action as time goes. This setup is
different from the one in the literature on learning in games (e.g., Fudenberg and
Kreps, 1993; Esponda and Pouzo, 2016), which asks when and why players play
equilibria; they assume that players do not know the opponent’s strategy and learn
it from experience. In our model, players know the opponent’s strategy, and learn
only the unknown economic state θ .6

In period one, both players have the same belief µ1
1 = µ1

2 = µ , so a Nash
equilibrium (x1

1,x
1
2) solves the first-order condition ∂E[Ui(x,θ)|µ]

∂xi
= 0 for each i,

where the expectation is taken with respect to θ . At the end of period one, players

5Another way to avoid the repeated-game effect is to use a Markov-perfect equilibrium (where
the state is players’ beliefs about θ ) as a solution concept. With an additional assumption, Ap-
pendix A shows that players’ long-run behavior is exactly the same as that of myopic players
studied in this section. In this sense, our result remains true even for forward-looking players.

6Condition (ii) is inessential if the game is dominance solvable (e.g., Cournot duopoly with
linear demand in Section 4.1).
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observe a public signal y1, and update the posterior beliefs using Bayes’ rule.
Assuming that no one has deviated in period one, each player i’s posterior belief
µ2

i in period two is given by

µ
2
1 (θ) =

µ1
1 (θ) f (y−Q(x1,a,θ))∫

Θ
µ1

1 (θ̃) f (y−Q(x1,a, θ̃))dθ̃
,

µ
2
2 (θ) =

µ1
1 (θ) f (y−Q(x1,A,θ))∫

Θ
µ1

1 (θ̃) f (y−Q(x1,A, θ̃))dθ̃
,

where x1 is the Nash equilibrium played in period one and f is the density function
of the noise term ε . Note that player 2’s posterior µ2

2 differs from player 1’s
posterior µ2

1 , as she incorrectly believes that the mean output is Q(x1,A,θ) rather
than Q(x1,a,θ). Because the players’ information structure about the parameter
a is common knowledge, these posteriors are common knowledge among players.
So in period two, players play a Nash equilibrium given the belief profile µ2 =

(µ2
1 ,µ

2
2 ), which solves ∂E[Ui(x,θ)|µ2

i ]
∂xi

= 0 for each i. Likewise, in any subsequent
period t, players play a Nash equilibrium given the belief profile µ t = (µ t

1,µ
t
2),

where µ t is computed by Bayes’ rule.

2.2 Steady-State Analysis

In this subsection, we will assume that the actions and the beliefs converge to a
steady state in the long run, and characterize how one’s misspecification influences
this long-run (steady-state) outcome. In the next subsection, we will show that the
actions and the beliefs indeed converge to this steady state under some conditions.
As will be seen, these conditions are satisfied in many economic examples such
as Cournot competition and team production.

A steady state in this model is a pair (x∗1,x
∗
2,µ
∗
1 ,µ

∗
2 ) of an action profile and a
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belief profile which satisfies the following four conditions:

x∗1 ∈ argmax
x1

U1(x1,x∗2,θ
∗), (1)

x∗2 ∈ argmax
x2

U2(x∗1,x2,θ2), (2)

µ
∗
1 = 1θ∗, (3)

µ
∗
2 = 1θ2 s.t. Q(x∗,A,θ2) = Q(x∗,a,θ ∗). (4)

The first two conditions are incentive compatibility, which requires that each
player maximizes her payoff given some beliefs. The next two conditions require
that these beliefs satisfy consistency: (3) asserts that the unbiased player 1 cor-
rectly learns the true state θ ∗ in a steady state. (4) requires that player 2’s belief is
concentrated on a state θ2 with which her subjective signal distribution coincides
with the true distribution. This condition must be satisfied in a steady state; oth-
erwise, player 2 is “surprised” by observed signals being different from what she
thinks, and changes her belief about θ accordingly. In general, this steady-state
belief θ2 is different from the true state θ ∗.

We assume that for each (x,A), there is a unique state θ2 which solves the
consistency condition Q(x,a,θ ∗) = Q(x,A,θ), and we denote it by θ2(x,A). In-
tuitively, θ2(x,A) is player 2’s long-run belief given an action profile x; if players
choose the same action profile x every period, then almost surely, player 2’s belief
will be concentrated on the state θ2(x,A) after a long time (Berk, 1966). Player 1’s
long-run belief is defined as θ1(x,A) = θ ∗ for all x and A, because she is unbiased
and can learn the true state θ ∗.

Our goal is to quantify how player 2’s misspecification A influences the steady-
state action defined above. We first describe how one’s action influence the op-
ponent’s steady-state action. Consider player i’s asymptotic best response corre-
spondence, which is defined as

BRi(x−i) =

{
xi

∣∣∣∣∣xi ∈ argmax
x′i

Ui
(
x′i,x−i,θi(x,A)

)}
. (5)

Intuitively, BRi(x−i) describes player i’s steady-state action in a single-agent learn-
ing problem where player i learns the state while the opponent simply chooses the
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same action x−i every period. Player 2’s asymptotic best response BR2 is differ-
ent from the standard best response, as it describes the optimal action in the long
run where the belief θ2(x,A) is endogenously determined. On the other hand,
player 1’s asymptotic best response BR1 coincides with the standard best response
correspondence given the state θ ∗, because her long-run belief is constant, i.e.,
θ1(x,A) = θ ∗ for all x. By a fixed-point theorem, BRi(x−i) is non-empty for all
x−i. A standard argument shows that BRi is upper hemi-continuous in x−i.

When the asymptotic best response is a function (rather than a correspon-
dence), its slope BR′i can be computed by

BR′i =−
Mi j

Mii
,

where for each i and j (possibly i = j),

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,A)

+
∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂x j

.

measures how player j’s action influences player i’s marginal utility in the long
run. To be precise, suppose that players choose the same action every period,
and that player j increases the action x j at bit. This influences player i’s marginal
utility directly and indirectly through the belief θi(x,A) in the long run. The first
term of Mi j represents this direct effect, and the second term represents the indirect
effect. For i = 1, the indirect effect is zero, because player 1’s long-run belief is
constant and does not depend on the actions (θ1(x,A)= θ ∗ for all x). Hence BR′1 =
∂ 2U1/∂x1∂x2

∂ 2U1/∂ 2x1
, which is precisely the slope of the standard best-response curve. Also,

for i= 2, the indirect effect disappears in the limit as A→ a, because θ2(x,a) = θ ∗

for all x. So when misspecification is small (i.e., A is close to a), each Mi j is
approximated by ∂ 2Ui

∂xi∂x j
, which means that BR′i is approximately the same as the

slope of the standard best-response function.
Let

M2A : =
∂ 2U2(x,A,θ)

∂x2∂A

∣∣∣∣
θ=θ2(x,A)

+
∂ 2U2(x,A,θ)

∂x2∂θ

∣∣∣∣
θ=θ2(x,A)

∂θ2(x,A)
∂A

(6)
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denote how player 2’s bias A influences her marginal utility in the long run. Again,
the first term ∂ 2U2

∂x2∂A measures the direct effect, while the second term ∂ 2U2
∂x2∂θ2

∂θ2
∂A

measures the indirect effect through the belief. Our first proposition quantifies the
impact of player 2’s first-order misspecification on the steady-state action.

Definition 1. A steady state x∗ is regular if the following conditions are satisfied
in x∗: (i) the steady-state action x∗i is uniquely optimal, i.e., Ui(x∗,θi(x∗,A)) >
Ui(xi,x∗−i,θi(x∗,A)) for all i and xi , x∗i , (ii) x∗ and θ2(x∗,A) are interior points,
(iii) BR′1BR′2 , 1, and (iv) Mii < 0 for each i.

Proposition 1 (Steady State under First-Order Misspecification). Let x∗ be a reg-
ular steady state for some parameter A∗. Then there is an open neighborhood of
A∗ such that for any value A in this neighborhood, there is a regular steady state
x∗ which is continuous with respect to A, and we have

∂x∗2
∂A

=−M2A

M22
· 1

1−BR′1BR′2
,

∂x∗1
∂A

=
∂x∗2
∂A
·BR′1.

Suppose in addition that given the parameter A∗, the steady state is unique and
each asymptotic best response BRi is a continuous function. Then, BR′1BR′2 < 1.7

Note that the regularity conditions (i) and (ii) are standard, and the condition
(iii) is satisfied for generic parameters. The condition (iv) reduces to player i’s
second-order condition for incentive compatibility when misspecification is small
(i.e., A is close to a).8

7If these additional assumptions do not hold, there may be a steady state with BR′1BR′2 >

1. But it seems that such a steady state is unstable in an evolutionary sense, especially when
misspecification is small. Indeed, in a one-shot game with correctly specified model, a Nash
equilibrium with BR′1BR′2 > 1 is not stable under the replicator dynamics (hence it is not an ESS)
or the best response dynamics. So in practice, if players’ play converge after a long time, it is
natural to expect that BR′1BR′2 < 1 in the steady state.

8Heidhues, Kőszegi, and Strack (2018) impose a similar assumption: They consider a single-
agent learning problem and assume a unique steady state, which requires Mii ≤ 0 in the steady
state.

10



Under this regularity condition, Proposition 1 shows that the impact of first-
order misspecification on the steady-state action is represented as the base mis-
specification effect −M2A

M22
times the multiplier effect 1

1−BR′1BR′2
. The base misspec-

ification effect measures how player 2’s bias influences her steady-state action x∗2
in the absence of strategic interaction. To see what it means, suppose that player 1
chooses the same fixed action each period, so player 2 faces a single-agent prob-
lem. Suppose that player 2’s bias A increases a bit. This influences player 2’s
marginal utility by M2A (recall that this includes the indirect effect through the
belief in the long run), and hence her optimal long-run action changes. The base
misspecification effect −M2A

M22
measures this change.

The multiplier effect 1
1−BR′1BR′2

in Proposition 1 measures how strategic inter-
action between two players amplifies/weakens the base misspecification effect. To
better understand the nature of this multiplier effect, suppose that player 2 changes
her action by ∆. Then player 1 best-responds to it and changes her action by BR′1∆,
which in turn has a feedback effect of BR′1BR′2∆ on player 2’s steady-state action;
note that player 1’s action influences player 2’s optimal action directly and indi-
rectly through her belief θ2(x,A), and both these effects are taken into account in
the asymptotic best response BR′2. This process continues multiple times; the feed-
back effect on player 2’s action influences player 1’s action, which again causes
a feedback effect of (BR′1BR′2)

2∆ on player 2’s action, and so on. Summing all
these feedback effects, player 2’s action changes by

∞

∑
k=0

(BR′1BR′2)
k
∆ =

1
1−BR′1BR′2

∆.

So the multiplier 1
1−BR′1BR′2

can be seen as a result of the infinite adjustment process
between the two strategic players.

The following corollary is an immediate consequence of Proposition 1:

Corollary 1. Suppose that all the assumptions in Proposition 1 (including the
ones in the second part) are satisfied. Then we have the following results:

(i) The multiplier 1
1−BR′1BR′2

is positive. So a strategic interaction influences the
size of the impact of misspecification, but not the direction.
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(ii) If sgn(BR′1) = sgn(BR′2), then the multiplier 1
1−BR′1BR′2

is greater than one.
So both strategic substitutes and strategic complements amplify the impact
of misspecification.

(iii) If sgn(BR′1) , sgn(BR′2), then the multiplier 1
1−BR′1BR′2

is less than one. So a
strategic interaction reduces the impact of misspecification.

This corollary characterizes when a strategic interaction amplifies/weakens
the impact of misspecification. An interesting special case is symmetric games.
When A = a, we have sgn(BR′1) = sgn(BR′2) in any symmetric equilibrium of a
symmetric game. So part (ii) of the corollary implies that a strategic interaction
always amplifies the impact of misspecification in these games, if misspecification
is small. On the other hand, part (iii) shows that a strategic interaction reduces the
impact of misspecification if sgn(BR′1), sgn(BR′2). This condition is satisfied, for
example, in a tournament model.9

Remark 1. So far we have assumed that player 1 knows the true parameter a,
but the result similar to Proposition 1 still holds even when both players have
first-order misspecification. Suppose that player 1 believes that the true parameter
is A1 , a, and player 2 believes that the true parameter is A , a. Suppose also
that these first-order beliefs are common knowledge. Then the impact of player
2’s misspecification A on the steady-state actions is still described by the formula
presented in Proposition 1, with a minor modification on the definition of BR′1;
now it must involve an indirect learning effect, in order to take into account the
endogeneity of her long-run belief θ1.

2.3 Sufficient Condition for Convergence

In a single-agent finite-action setup, Esponda, Pouzo, and Yamamoto (2021) pro-
vide a fairly general condition for convergence; they show that the agent’s belief

9Consider a tournament model by Lazear and Rosen (1981) in which player i’s payoff is Pi(ei−
e j)w− c(ei) where w > 0 is the prize for a winner, c(·) is an increasing and convex cost, and Pi(·)
is i’s probability of winning which satisfies P1(·) = 1−P2(·). Then, so long as P′′i (0) , 0, the
standard best response curves have opposite signs.
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converges to a steady state almost surely if an “identifiability condition” holds.
In this subsection, we will show that the same result holds in our two-player
continuous-action model. Having two players does not cause a serious difficulty,
because our problem is essentially a single-agent problem; since player 1 is un-
biased and learns the true state, we only need to take care of player 2’s belief
evolution.

On the other hand, having continuous actions causes a technical complication.
When actions are finite, an agent’s action frequency is represented as a finite-
dimensional vector. Esponda, Pouzo, and Yamamoto (2021) show that the motion
of this action frequency is approximated by a differential inclusion, and use this
result to prove convergence. In our continuous-action model, the action frequency
is an infinite-dimensional vector, and it moves in a Banach space, rather than a
Euclidean space. We can still show that (with an appropriate choice of a norm)
the motion of the action frequency is approximated by a differential inclusion just
as Esponda, Pouzo, and Yamamoto (2021), but this is a differential inclusion in a
Banach space, which is difficult to solve. So we do not work on this differential in-
clusion directly, and instead, we look at players’ beliefs. As we show in Appendix
A, the asymptotic motion of the beliefs is approximated by finite-dimensional dif-
ferential inclusion, which is much more tractable than that in a Banach space. We
use this result to prove convergence.

Let us define the identifiability condition in our environment. For each action
profile x, define player 2’s surprise function as

K2(θ ,x) =
(Q(x,θ ,A)−Q(x,θ ∗,a))2

2

Intuitively, this surprise function measures how player 2’s subjective expectation
Q(x,θ ,A) about the output is different from the truth, when she believes that the
state is θ .10 Then for each probability measure σ ∈ 4X on the set of action

10This surprise function is exactly the Kullback-Leibular divergence between the true output
distribution and the subjective distribution. See Appendix A for the general definition of the
Kullback-Leiblar divergence.
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profiles, define a weighted surprise function as

K2(θ ,σ) =
∫

X
K(θ ,x)σ(dx).

Intuitively, this function measures how player 2’s subjective expectation is dif-
ferent from the truth on average, when players take different actions in different
periods. The identifiability requires that for each σ , the weighted surprise function
K2(θ ,σ) has a unique minimizer θ2(σ) and it is an interior point. The following
proposition shows that this identifiability condition ensures convergence.

Proposition 2. Suppose that there is a unique steady state (x∗1,x
∗
2,θ1,θ2) and it

is regular.11 Suppose also that the identifiability condition holds. Then almost
surely, player 2’s belief converges to the steady state belief, i.e., limt→∞ µ t

2 = 1θ2 .

Remark 2. Identifiability is sufficient for convergence, but not necessary. For
example, Proposition 9 of Esponda, Pouzo, and Yamamoto (2021) show that in a
single-agent problem, the agent’s action converges if payoffs and information are
“monotone.” We can show that a similar result holds for general Q in the team
production problem studied in Section 4.2. For more details, see C.

3 Higher-Order Misspecification

In Section 2, we have studied the case in which players correctly understand what
the opponent thinks about the environment. However, economic agents often have
higher-order misspecification, in that they may have a biased view about the oppo-
nent’s view about the environment (second-order misspecification), a biased view
about the opponent’s second-order misspecification, and so on.12

11Assuming a unique steady state is not essential, but it simplifies the statement. In the proof,
we actually show that the belief converges even when there are multiple steady states.

12As evidence from laboratory experiments, subjects often systematically mispredict other sub-
jects’ preferences and actions (e.g., Van Boven, Dunning, and Loewenstein, 2000). Ludwig and
Nafziger (2011) report that most subjects in their experiments are not aware of or underestimate
overconfidence of other subjects.
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In this section, we will focus on a special form of higher-order misspecifica-
tion: We will assume that each player has a biased view about the environment,
and on top of that, she naively thinks that the opponent shares the same view
about the world (in reality, the opponent has her own view about the world). We
call it double misspecification, because players have a biased view about the world
(first-order misspecification) and a biased view about the opponent’s view about
the world (second-order misspecification). Our goal in this section is to character-
ize how such misspecification influences players’ long-run behavior. Of course,
we can think of various other forms of higher-order misspecification. In Appendix
A, we will present a more general model of higher-order misspecification.

3.1 Setup: Double Misspecification

In the economic environment described in Section 2.1, we will consider the fol-
lowing information structure:

• Each player i (incorrectly) believes that it is common knowledge that the
signal y is given by y = Q(x1,x2,Ai,θ)+ ε .

We allow A1 , A2, so the different players may have different levels of misspeci-
fication.

This setup is substantially different from the first-order misspecification in the
previous section, because now players have inferential naivety and make incorrect
predictions about the opponent’s play. Indeed, while player i believes that the op-
ponent (player j) maximizes the payoff conditional on the parameter Ai, in reality,
the opponent maximizes the payoff conditional on the parameter A j. Accordingly,
player i’s prediction about the opponent’s action does not match the opponent’s
actual action in general.

To analyze players’ behavior in the presence of such inferential naivety, it is
useful to consider two hypothetical players. Hypothetical player 1 is player 1
who thinks that it is common knowledge that the true technology is A2. Intu-
itively, player 2 thinks that this hypothetical player is her opponent, and hence
each period, player 2 chooses a Nash equilibrium action against this hypothetical
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player. Similarly, hypothetical player 2 is player 2 who thinks that it is common
knowledge that the true technology is A1. Each period, player 1 chooses a Nash
equilibrium against this hypothetical player.

Let x̂i and µ̂i denote hypothetical player i’s action and belief, and let x =

(x1,x2, x̂1, x̂2) denote an action profile in the four-player game. Player i’s expected
stage-game payoff is defined as

Ui(x,θ ,Ai) = E[ui(xi,Q(xi, x̂−i,Ai,θ)+ ε)],

because she thinks that the parameter is Ai and the opponent is a hypothetical
player. Similarly, hypothetical player i’s expected stage-game payoff given θ is

Ûi(x,θ ,A−i) = E[ui(x̂i,Q(x̂i,x−i,A−i,θ)+ ε)].

Using these notations, the equilibrium strategy in the infinite-horizon game is de-
scribed as follows. In period one, all players have the same belief µ1

i = µ̂1
i = µ .

So they play a Nash equilibrium (x1
1,x

1
2, x̂

1
1, x̂

1
2), which solves the first-order con-

ditions ∂E[Ui(x,θ)|µ]
∂xi

= 0 and ∂E[Ûi(x,θ)|µ]
∂ x̂i

= 0. At the end of period one, players
observe a public signal y1 = Q(x1

1,x
1
2,a,θ

∗)+ ε , and update the posterior beliefs
using Bayes’ rule. Their beliefs in period two are given by

µ
2
i (θ) =

µ1
i (θ) f (y−Q(x1

i , x̂
1
−i,Ai,θ))∫

Θ
µ1

i (θ̃) f (y−Q(x1
i , x̂

1
−i,Ai, θ̃))dθ̃

,

µ̂
2
i (θ) =

µ̂1
i (θ) f (y−Q(x̂1

i ,x
1
−i,A−i,θ))∫

Θ
µ̂1

i (θ̃) f (y−Q(x̂1
i ,x

1
−i,A−i, θ̃))dθ̃

.

As is clear from this formula, player i’s posterior belief is biased in two ways:
She updates the belief conditional on the wrong parameter Ai, and on the wrong
prediction x̂1

−i about the opponent’s play. Then in period two, players play a Nash
equilibrium given this belief profile µ2 = (µ2

1 ,µ
2
2 , µ̂

2
1 , µ̂

2
2 ).

13 Likewise, in any
subsequent period t, players play a Nash equilibrium given the posterior beliefs
computed by Bayes’ rule.

13Since y is public, player 1 correctly predicts hypothetical player 2’s posterior belief µ̂2
2 , and

similarly, hypothetical player 2 correctly predicts player 1’s posterior belief µ2
1 . So they will

indeed play a Nash equilibrium given these beliefs.
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3.2 Steady-State Analysis

As in the case of first-order misspecification, we assume that players’ actions and
beliefs converge to a steady state, and study how one’s misspecification influences
this steady-state outcome. We will provide a sufficient condition for convergence
in Section 3.3.

Given an action profile x = (x1,x2, x̂1, x̂2), let θi(x,Ai) denote player i’s long-
run belief when the same action x is chosen every period. That is, let θi(x,Ai) be
a state θ which solves

Q(xi, x̂ j,Ai,θ) = Q(x1,x2, ,a,θ ∗),

so that player i’s subjective model (the left-hand side) explains the actual output
(the right-hand side). A critical difference from the case of first-order misspeci-
fication is that player i has inferential naivety and uses x̂ j (rather than x j) when
evaluating the average output. In what follows, we will assume that θ2(x,A) is
unique for each x and Ai.

With this notation, a steady state under double misspecification is defined as
(x∗1,x

∗
2, x̂
∗
1, x̂
∗
2,µ
∗
1 ,µ

∗
2 , µ̂

∗
1 , µ̂

∗
2 ) which satisfies

x∗i ∈ argmax
xi

Ui(xi, x̂∗−i,Ai,θi) ∀i, (7)

x̂∗i ∈ argmax
x̂i

Ûi(x̂i,x∗−i,A−i,θ−i) ∀i, (8)

µ
∗
1 = µ̂

∗
2 = 1θ1(x,A1), (9)

µ
∗
2 = µ̂

∗
1 = 1θ2(x,A2). (10)

The first two conditions are the incentive-compatibility conditions, which require
that each player maximize her own payoff given some beliefs. The next two con-
ditions require that these beliefs satisfy consistency, in that each (actual and hypo-
thetical) player’s belief is concentrated on a state with which her subjective signal
distribution coincides with the objective distribution.

As in the case of first-order misspecification, we will quantify how one’s mis-
specification influences the steady-state outcome, using the slope of asymptotic
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best response curve. For notational convenience, let player 3 refer to hypothetical
player 1, and player 4 refer to hypothetical player 2. Then define the slope of
player i’s asymptotic best response curve with respect to player j’s action as

BR′i j =−
Mi j

Mii

where for each i, j = 1,2,3,4 (possibly i = j),

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,Ai)

+
∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,Ai)

· ∂θi(x,A)
∂x j

denotes the impact of player j’s action on player i’s marginal utility in the long
run. Here the first term is the direct effect, and the second term is the indirect
effect through the steady-state belief θi.

Intuitively, BR′i j measures how player j’s action influences player i’s optimal
long-run action, when other players’ actions are fixed. The mathematical defini-
tion of BR′i j is exactly the same as that for first-order misspecification, but there
are two important remarks. First, each Mi j here involves the indirect effect caused
by inferential naivety, and thus BR′i j may not be zero even when player i does
not think that player j is the opponent.14 For example, consider BR′12 = −M12

M11
.

Since player 1 does not think that player 2 is the opponent, she does not respond
to player 2’s action, which means that the direct effect in M12 is zero. However, a
change in player 2’s action influences player 1’s steady-state belief θ1; it leads to
incorrect learning, because player 1 is not aware of a change in player 2’s action.
Hence the indirect effect in M12 is non-zero, and so is BR′12.

Second, this indirect effect from inferential naivety does not vanish even when
Ai approaches a. So even in the limit case with Ai = a, the slope BR′i j is not
approximated by the slope of the standard best response curve. This is in a sharp
contrast with the case of first-order misspecification, where all indirect effects
vanish in the limit as A→ a.

14More precisely, we always have BR′13 = BR′24 = BR′34 = BR′43 = 0, but other slopes BR′i j are
non-zero in general.
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For each i = 2,3, let

MiA :=
∂ 2Ui(x,θ ,A2)

∂xi∂A2

∣∣∣∣
θ=θi(x,A2)

+
∂ 2Ui(x,θ ,A2)

∂xi∂θ

∣∣∣∣
θ=θi(x,A2)

∂θi(x,A2)

∂A2

denote the impact of player i’s first-order misspecification on her marginal util-
ity. The following proposition characterizes how player 2’s misspecification in-
fluences the steady-state actions.

Definition 2. A steady state x∗ is regular if the following conditions are satisfied
in x∗: (i) the steady-state action x∗i is uniquely optimal, (ii) x∗ and θi(x∗,Ai) are
interior points, (iii) BR′14BR′41 , 1, BR′23BR′32 , 1, and BR′14BR′41 +BR′23BR′32 +

(BR′21 +BR′23BR′31)(BR′12 +BR′14BR′42) , 1, and (iv) Mii < 0 for each i.15

Proposition 3 (Steady State under Double Misspecification). Let x∗ be a regular
steady state for some parameter A∗ = (A∗1,A

∗
2). Then there is an open neighbor-

hood of A∗2 such that for any value A2 in this neighborhood, there is a regular
steady state x∗ which is continuous with respect to A2, and we have

∂x∗2
∂A2

=

(
−M2A

M22
−BR′23

M3A

M33

)(
1

1−BR′23BR′32

)(
1

1−NE ′1NE ′2

)
,

∂x∗1
∂A2

=
∂x∗2
∂A2
·NE ′1,

where

NE ′1 =
BR′12 +BR′14BR′42

1−BR′14BR′41
and NE ′2 =

BR′21 +BR′23BR′31
1−BR′23BR′32

.

The term −M2A
M22
−BR′23

M3A
M33

in the first equation is the base misspecification
effect of double misspecification. Suppose that the parameter A2 increases a bit.

15As in the case with first-order misspecification, the regularity conditions (i) and (ii) ensure
that the steady state is continuous with respect to the parameter Ai and the first-order condition
for the incentive compatibility is satisfied there. The condition (iii) is needed for the multiplier
effect to be well-defined. The condition (iv) ensures that the base misspecification effect and the
slope of the asymptotic best response curve are well-defined. This condition is also useful when
we interpret the base misspecification effect.
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This influences player 2’s steady-state action in two ways: First, it increases player
2’s bias about the physical environment a, which influences her optimal action di-
rectly and indirectly through the belief. This effect is measured by −M2A

M22
, just

as in the case of first-order misspecification. Second, when A2 increases, hypo-
thetical player 1’s bias about the physical environment a increases. Hence this
hypothetical player modifies the action, and player 2 best-responds to it. This ef-
fect is measured by −BR′23

M3A
M33

. This second effect is a consequence of player 2’s
second-order misspecification (inferential naivety).

Proposition 3 shows that this base misspecification effect is further ampli-
fied by the two multipliers, 1

1−BR′23BR′32
and 1

1−NE ′1NE ′2
. The first multiplier ef-

fect, 1
1−BR′23BR′32

, is similar to the multiplier effect appearing in Proposition 1,
and it represents how the strategic interaction between player 2 and hypotheti-
cal player 1 (which happens in player 2’s mind) amplifies the base misspecifi-
cation effect, holding other players’ actions being fixed. So the term (−M2A

M22
−

BR′23
M3A
M33

)( 1
1−BR′23BR′32

) in the equation measures how player 2’s misspecification
influences her own action, when player 1’s action is fixed.

The second multiplier effect, 1
1−NE ′1NE ′2

, captures what happens when player
1’s action is not fixed and she changes her action over time. The economic in-
terpretation of this multiplier effect is very different from the first one, in that it
is not about the impact of strategic interaction; rather, it measures how incorrect
learning due to inferential naivety amplifies the impact of misspecification.

To see what it means, suppose that player 2’s action changes by ∆ due to
misspecification. This does not influence player 1’s action immediately, because
player 1 is not aware of player 2’s misspecification, and thus does not best-respond
to this change. However, in the long run, it causes incorrect learning and influ-
ences player 1’s steady-state belief µ1, which in turn influences player 1’s action
directly and indirectly through hypothetical player 2’s action. (Note that the belief
µ1 influences hypothetical player 2’s optimal action, and player 1 best-responds
to it.) This effect is BR12∆+BR14BR42∆. Since this effect is further amplified
by 1

1−BR14BR41
due to the strategic interaction between player 1 and hypotheti-

cal player 2, in total, player 1’s action changes by NE ′1∆. Then for the same
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reason, this change in player 1’s action influences player 2’s action, which influ-
ences player 1’s action, and so on. This infinite process leads to the multiplier

1
1−NE ′1NE ′2

.16

Remark 3. In this section, we have assumed two-sided misspecification, in that
both players 1 and 2 are misspecified. For some applications, it is also important
to think about one-sided misspecification; e.g., one can think of a seller-buyer
problem where only a buyer is misspecified while a seller is fully rational. It turns
out that even with such one-sided misspecification, the result similar to Proposi-
tion 3 still holds. Specifically, the equations in Proposition 3 are still valid, if we
replace NE ′1 with the slope of the best-response function BR′1. This is because
when player 1 is fully rational, then she correctly learns the state and simply best-
responds to player 2’s action.

3.3 Sufficient Condition for Convergence

Now we will think about whether players’ actions and beliefs indeed converge to
a steady state. Under double misspecification, both player 1’s belief µ t

1 and player
2’s belief µ t

2 evolve in a non-trivial way. This makes our analysis significantly
more complicated than that of first-order misspecification, where there is only
one belief which moves in a non-trivial way. Nonetheless, we find that the belief
converges if the identifiability condition and some additional assumption hold.

Recall that in the case with first-order misspecification, identifiability requires
each (weighted) surprise function to have a unique minimizer. Under double mis-

16NE ′1 can be also seen as the slope of player 1’s asymptotic Nash equilibrium correspondence
defined as

NE1(x2) = {x1|∃x̂2 satisfying (7) for i = 1, (8) for i = 2, (9)}.

In words, NE1(x2) denotes player 1’s steady-state action, when player 2 chooses the same action
x2 every period while the other players learn the state and adjust actions. Note that player 2 is not
player 1’s opponent, but nonetheless her action x2 influences player 1’s steady-state action due to
the incorrect learning: If player 2 changes the action and player 1 is not aware of it, player 1’s
long-run belief is affected, and so is her long-run optimal action. So its slope, NE1, measures how
a marginal change in player 2’s (constant) action x2 influences player 1’s steady-state action.
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specification, player i’s surprise function is defined as

Ki(θ ,x) =
(Q(xi, x̂−i,θ ,Ai)−Q(xi,x−i,θ ,a))2

2
for each action profile x = (x1,x2, x̂1, x̂2), and her weighted surprise function is
defined as

Ki(θ ,σ) =
∫

X
Ki(θ ,x)σ(dx)

for each probability measure σ ∈4(X1×X2×X1×X2). These surprise functions
are a bit different from those under first-order misspecification because of infer-
ential naivety; player i thinks that players play (xi, x̂−i), but the actual actions are
(xi,x−i). Identifiability requires that each of the above surprise functions has a
unique minimizer.

Under double misspecification, we need an additional assumption for conver-
gence. To state our condition formally, consider the single-agent learning problem
in which player 1 (and hypothetical player 2) learns the state over time, while the
belief of player 2 (and of hypothetical player 1) is fixed at some value θ2. Let
f1(θ2) denote the set of steady-state beliefs of player 1 in this problem, that is,
f1(θ2) is the set of all θ1 such that there is (x1,x2, x̂1, x̂2) satisfying the consis-
tency condition (9) and the incentive-compatibility condition (7) and (8) given
µ2 = µ̂1 = 1θ2 .

Likewise, consider the single-agent learning problem in which player 2 (and
hypothetical player 1) learns the state over time, while the belief of player 1 (and
of hypothetical player 2) is fixed at some value θ1. Then let f2(θ1) denote the
set of steady-state belief of player 2, that is, f2(θ1) is the set of all θ2 such that
there is (x1,x2, x̂1, x̂2) satisfying the consistency condition (10) and the incentive-
compatibility condition (7) and (8) given µ1 = µ̂2 = 1θ1 .

The following proposition present a sufficient condition for convergence under
double misspecification.

Proposition 4. Suppose that there is a unique steady state (x∗1,x
∗
2,θ1,θ2) and it

is regular. Suppose also that for each i and σ , the weighted surprise function
Ki(θ ,σ) has a unique minimizer θ2(σ) and it is an interior point. In addition,
assume that
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(i) For each i, fi(θ−i) is a function (rather than a correspondence), and is
continuously differentiable in θ−i.

(ii) maxθ1 |
∂ f2(θ1)

∂θ1
|maxθ2 |

∂ f1(θ2)
∂θ2
|< 1.

Then players’ beliefs converge to the steady state almost surely, regardless of the
initial prior.

Assumption (i) in this proposition is identifiability, and it ensures that the be-
lief converges in every one-dimensional problem. Assumption (ii) requires that
each player’s steady-state belief fi is not too sensitive to the opponent’s belief;
this means that one’s learning is not influenced by the the opponent’s learning by
much, at least asymptotically. Proposition 4 shows that the beliefs indeed con-
verge under these conditions.

4 Applications

4.1 Cournot duopoly

Consider a symmetric Cournot duopoly. Each firm i= 1,2 simultaneously chooses
its quantity xi, and then they observe a market price y=Q(x1+x2,a,θ)+ε , where
a is a parameter which influences the demand and θ is an unknown economic
state. Firm i’s payoff is ui(xi,y) = xiy− c(xi), where xiy is firm i’s revenue and
c(xi) is firm i’s production cost. We assume that the inverse demand function Q is
strictly decreasing and weakly concave in the first element, and the cost function
c is strictly increasing and weakly convex.17

Kyle and Wang (1997), Heifetz, Shannon, and Spiegel (2007), and Englmaier
(2010) study (a variant of) one-shot Cournot competition with linear demand, and
show that (a moderate level of) overconfidence about the market demand is ben-
eficial, in that an overconfident firm earns higher equilibrium payoffs than the
unbiased rival firm. Intuitively, the overconfident firm is willing to produce more

17These assumptions imply a concave payoff function, a downward-sloping best response curve,
and a unique Nash equilibrium under the correctly specified model. See, e.g., Tirole (1988).
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than in the correctly specified model. Knowing that, the unbiased firm reduces
its production level in equilibrium, which yields higher profits to the overconfi-
dent firm. This mechanism is similar to the commitment effect in the Stackelberg
duopoly.

Their result relies on two implicit assumptions. First, they assume that the
game is one-shot. It is not a priori clear if their result persists in the long run,
because when the game is repeatedly played, the overconfident firm is “surprised”
by a realized price being lower than its anticipation, and modifies the (subjective)
view about the demand function. Second, they assume that a firm’s overconfi-
dence is common knowledge, while in reality the opponent may not be aware of
the firm’s overconfidence. In this section, we will relax these assumptions and
investigate how it changes the result.

First-order misspecification. To begin with, we will relax the first assumption
only, and consider a dynamic model in which one’s overconfidence is common
knowledge. Specifically, we consider the model of first-order misspecification in
which firm 2 incorrectly believes that the true parameter is A > a. We assume
that QA > 0 and QxA ≥ 0 for all x with x1 + x2 > 0, which means that firm 2 is
overconfident about the price level Q and (weakly) overconfident about the slope
of the inverse demand curve Qx. Firm 1 knows that the true parameter is a, and the
firms’ first-order beliefs are common knowledge. Note that similar assumptions
are imposed in Kyle and Wang (1997). We also assume that Qθ > 0 and Qxθ ≥ 0
for all x with x1 + x2 > 0, i.e., the state θ has positive impacts on the price level
and the slope of the inverse demand function.

Here are two examples which satisfy the assumptions above:18

Q(x1 + x2,a,θ) = a− (1−θ)(x1 + x2), (11)

Q(x1 + x2,a,θ) = θ − (1−a)(x1 + x2). (12)

18These examples satisfy the regularity condition for first-order misspecification with A = a,
and for double misspecification with A1 = A2 = a. They also satisfy the conditions stated in
Propositions 2 and 4, so the firms’ beliefs and actions converge to the steady state. The proof is in
Appendix D.
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In the first example (11), firm 2 is overconfident about the intercept of the demand
function and learns its slope.19 Conversely, in the second example (12), firm 2 is
overconfident about the slope and learns the intercept.20

We will consider how firm 2’s overconfidence influences the long-run steady
state outcome. Recall from Proposition 1 that the impact of firm 2’s overconfi-
dence on its own steady-state action is represented as the base misspecification
effect −M2A

M22
times the multiplier. For ease of exposition, we assume that misspec-

ification is small (i.e., A is close to a) so that M22 < 0 and the multiplier is positive.
Simple algebra shows that the base misspecification effect in our Cournot model
is written as

− 1
M22


direct effect︷                   ︸︸                   ︷

QA(x∗1 + x∗2,A,θ2)+

indirect effect︷                         ︸︸                         ︷
∂θ2

∂A
Qθ (x∗1 + x∗2,A,θ2)︸                                                     ︷︷                                                     ︸

on the price level

+x∗2


direct effect︷                    ︸︸                    ︷

QxA(x∗1 + x∗2,A,θ2)+

indirect effect︷                          ︸︸                          ︷
∂θ2

∂A
Qxθ (x∗1 + x∗2,A,θ2)︸                                                       ︷︷                                                       ︸

on the slope


 .

(13)

This expression shows that the long-run behavior of the overconfident firm is gov-
erned by two countervailing forces. The first one is the direct effect, QA + x2QxA,
which measures how firm 2’s misspecification directly influences its marginal util-
ity. Since we assume QA > 0 and QxA ≥ 0, this effect is positive, and hence in-
creases the firm’s incentive to produce. This is exactly the effect studied in Kyle
and Wang (1997). The second one is the indirect effect, ∂θ2

∂A (Qθ + x2Qxθ ), which
measures how firm 2’s learning (about θ ) influences the marginal utility in the
long run. Since ∂θ2

∂A < 0, Qθ > 0, and Qxθ ≥ 0, this effect is negative, and hence
weakens the firm’s incentive to produce.

If the direct effect is larger than the indirect effect, the overconfident firm

19This happens, for example, when the firm is overconfident about the preference of the cus-
tomers and learns their number. Suppose that there are 1

1−θ
customers, and each of them purchases

a− p units of products, where p is a price. Then, the total demand is x = a−p
1−θ

, which results in the
inverse demand function p = a− (1−θ)x.

20This happens, for example, when the firm is overconfident about the number of the customers
and learns their preference. Suppose that there are 1

1−a customers, and each of them purchases
θ − p units of products. Then, the total demand is x = θ−p

1−a , which results in the inverse demand
function p = θ − (1−a)x.
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is willing to produce more even in the long run. This means that the result of
Kyle and Wang (1997) persists, i.e., in the long-run steady state, the rival firm
best-responds by producing less, which yields a higher profit to the overconfident
firm.21

On the other hand, if the indirect effect outweighs the direct effect, the over-
confident firm is willing to produce less in the long run. Then the commitment
effect works towards the opposite direction, i.e., the rival firm best-responds by
producing more, which harms the overconfident firm’s profit. So in this case,
the result of Kyle and Wang (1997) is overturned and a firm’s overconfidence is
detrimental in the long run.

There is another interpretation of the base misspecification effect (13). Note
that the first two terms in the brackets cancel out, because the overconfident firm
correctly predicts the price level in the steady state.22 Accordingly, the base mis-
specification effect is rewritten as

−
x∗2

M22

(
QxA +

∂θ2

∂A
Qxθ

)
=−

x∗2QA

M22

(
QxA

QA
− Qxθ

Qθ

)
.

This expression implies that the long-run behavior of the overconfident firm is
determined by its steady-state belief about the demand slope: If QxA

QA
− Qxθ

Qθ
> 0

so that the firm is optimistic about the demand slope, then it produces more than
in the correctly-specified model, and obtains a higher profit. This happens in
example (12) where the firm is persistently overconfident about the demand slope.

On the other hand, if QxA
QA
− Qxθ

Qθ
< 0 so that the firm is pessimistic about the

demand slope, then it produces less and earns a lower profit. This happens in
example (11) where the overconfident firm becomes pessimistic about the demand
slope through learning. This discussion leads to the following corollary:

Corollary 2. Consider the model of first-order misspecification. Suppose that
there is a unique steady state at A = a and it is regular.23 Then at A = a, we have

21However, due to the indirect effect, the overconfident firm’s profit is less than that in the
one-shot game: By the incorrect learning, the commitment effect is weakened in the long run.

22By the implicit function theorem, ∂θ2
∂A =−QA

Qθ
< 0, and hence we indeed have QA+

∂θ2
∂A Qθ = 0.

23Because a steady state is an intersection of asymptotic best response correspondences BR1
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sgn∂x∗2
∂A = sgn

(
−∂x∗1

∂A

)
= sgn∂π∗2

∂A = sgn
(
−∂π∗1

∂A

)
= sgn

(
QxA
QA
− Qxθ

Qθ

)
, |∂x∗2

∂A |> |
∂x∗1
∂A |,

and |∂π∗1
∂A |> |

∂π∗2
∂A |.

Double misspecification. Now we will relax the common knowledge assump-
tion, and consider the case in which firm 1 is unaware of the rival firm’s overcon-
fidence. Specifically, consider double misspecification with A1 = a and A2 > a, so
that the firm’s beliefs about the parameter a are the same as before, but each firm
(incorrectly) believes that the other firm shares the same view about the parameter
a.

How does the overconfident firm 2 behave in such a situation? Proposition 3
shows that the impact of one’s overconfidence on its own steady-state action is the
base misspecification effect, −M2A

M22
−BR′23

M3A
M33

, times the multipliers. As shown
in Lemma 4 in Appendix B.7, when the game is symmetric, the sign of this base
misspecification effect is the same as that of first-order misspecification.24 So un-
der double misspecification, firm 2 produces more than in the correctly-specified
model if it does so in the case of first-order misspecification, and produces less if
it does so in the case of first-order misspecification.

How about the behavior of the rival firm? A critical difference from the case
of first-order misspecification is that the commitment effect does not exist in this
environment; although firm 2’s overconfidence influences its behavior, the oppo-
nent is not aware of it and does not best-respond to it. This in particular implies
that if we look at the one-shot game, firm 2’s overconfidence does not influence
the opponent’s behavior, and hence never be beneficial.

However, in our dynamic model, firm 2’s overconfidence can still improve the
equilibrium payoff. Indeed, we have the following result:

Corollary 3. Consider the model of double misspecification with A1 = a. Suppose
that there is a unique steady state at A2 = a and it is regular. Then at A2 = a, all
the results stated in Corollary 2 still hold.

and BR2, the steady state is unique if BR′i(x j) ∈ (−1,1) for all i and x j where j , i.
24Intuitively, this happens because the impact |BR′23

M3A
M33
| of second-order misspecification is

smaller than the impact |M2A
M22
| of first-order misspecification in symmetric games.
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So in the long-run, first-order misspecification and double misspecification
lead to similar steady-state outcomes, i.e., firm 1’s unawareness about firm 2’s
overconfidence does not have a significant impact on their long-run behavior. In
particular, when QxA

QA
− Qxθ

Qθ
> 0, firm 2’s overconfidence improves its long-run

equilibrium payoff, regardless of whether the opponent is aware of it.
Why do we have such a result, even though the commitment effect does not

exist under double misspecification? A key is that firm 1’s long-run behavior is
influenced by incorrect learning. To illustrate the idea, suppose that the base mis-
specification effect is positive, so that firm 2 produces more than in the correctly-
specified model. Under double misspecification, firm 1 is not aware of it, and
hence observes prices which are systematically lower than the anticipation. Ac-
cordingly, firm 1 becomes pessimistic about θ and produces less; this yields a
higher profit to the overconfident firm 2 even in the absence of the commitment
effect.

4.2 Team production

In the Cournot model, we have seen that one’s unawareness about the opponent’s
overconfidence does not have a significant impact on the equilibrium outcome.
However, this result does not hold in general; there are many economic examples
in which first-order misspecification and double misspecification lead to qualita-
tively different outcomes. In this subsection, we will present one of such exam-
ples: a team production problem.

Consider two players working on a joint project. Each period, player i = 1,2
chooses an effort level xi, and observes a stochastic output y = Q(x,a,θ ∗) + ε

where a is a fixed parameter (e.g., one’s capability) and θ ∗ is an unknown funda-
mental. We assume that Q is twice-continuously differentiable, Qxi > 0, Qa > 0,
and Qθ > 0. Player i’s payoff is y− c(xi), where c(xi) is the effort cost satisfying
c′ > 0 and c′′ > 0. Assume also that there is a unique Nash equilibrium in the
one-shot game. This setup is fairly general, and includes the following examples
as special cases.25

25Again, these examples satisfy the regularity condition for first-order misspecification with A=
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Example 1. Let ai denote player i’s capability, and let a = a1 +a2 denote the
total capability. Let ci(xi) = x2

i and

Q = θ(x1 + x2 + kx1x2 +a),

where k ∈ (− 2
θ∗ ,

2
θ∗ ) is a fixed parameter.26 Note that efforts are complements

if k > 0, and substitutes if k < 0. Each player i may have a bias and incorrectly
believe that the total capability is Ai , a. When Ai > a, it represents one’s over-
confidence. When Ai < a, it represents one’s underconfidence or prejudice about
the opponent’s capability. Players learn the profitability θ of the business over
time. This setup corresponds to a multi-player version of Example 2 of Heidhues,
Kőszegi, and Strack (2018).

Example 2. Let a denote player 1’s capability. Let ci(xi) = x2
i and

Q = θ(ax1 + x2 + kx1x2 +2),

where k ∈ (− 2
θ∗ ,

2
θ∗ ) is a fixed parameter. A difference from Example 1 is that

player 1’s capability a influences her marginal productivity, which makes the func-
tion Q asymmetric, in that Q(x1,x2,a,θ) ,Q(x2,x1,a,θ) for a , 1. As will be ex-
plained, this property has a qualitative impact on the steady-state outcome under
double misspecification.

First-Order Misspecification. Again, we start with the benchmark case in which
player 2 has first-order misspecification, in that she incorrectly believes A , a.
Simple algebra shows that the base misspecification effect of first-order misspec-
ification is

− 1
M22


direct effect︷︸︸︷

QxiA +

indirect effect︷      ︸︸      ︷
∂θ2

∂A
Qxiθ︸                        ︷︷                        ︸

on marginal productivity

 . (14)

a and for double misspecification with A1 = A2 = a, and the sufficient conditions for convergence
stated in Propositions 2 and 4. The proof is in Appendix D.

26This assumption ensures that the equilibrium is an interior point.
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So the base misspecification effect is determined by the biased player 2’s sub-
jective view about the marginal productivity in the steady state; the term QxiA

measures how player 2’s misspecification influences her view about the marginal
productivity, and the term ∂θ2

∂A Qxiθ measures how the incorrect learning modifies
it.

Following Heidhues, Kőszegi, and Strack (2018), we will assume Qx2A ≤ 0
and Qx2θ > 0, i.e., the marginal return Qxi of the misspecified player is negatively
correlated with the capability, and positively correlated with the fundamental. It is
easy to check that this assumption is satisfied in Examples 1 and 2 above. Under
this assumption, both the direct effect and the indirect effect in (14) are negative.
Thus the overconfident player 2 works less in the static model, and even less in the
long run (so we have ∂x∗2

∂A < 0). Intuitively, when a player is overconfident about
her own capability, she observes outputs systematically lower than the anticipa-
tion. Accordingly, as time goes, she becomes pessimistic about the state θ and
reduces the effort.27

How about the equilibrium payoffs? There are two cases to be considered.
First, suppose that Qx1x2 > 0 so that efforts are complements. (In the above ex-
amples, this corresponds to k > 0.) Then the rational player 1 reduces the effort
as a response to the lower effort of the overconfident player, which reduces the
overconfident player’s payoff. So one’s overconfidence is detrimental in this case.

Next, suppose that Qx1x2 < 0 so that efforts are substitutes. (In the above exam-
ples, this corresponds to k < 0.) In this case, one’s overconfidence is beneficial;
indeed, the rational player 1 increases the effort as a response, which improves

27Of course, the argument here can be extended to a more general setup. The bottom-line is
that the short-run effect of player 2’s overconfidence on her own action is determined by Qx2A, and
the long-run effect is determined by Qx2A +

∂θ2
∂A Qx2θ = Qx2A− QA

Qθ
Qx2θ . For example, suppose that

Q < 0 is the damage from drought and agents invest to irrigation which mitigate the damage, and
it takes a form of

Q =− 1
θ

(
1

x1 + x2
+

1
a

)
.

In this case, QxiA ≥ 0 and Qxiθ < 0, so both the direct effect and the indirect effect are positive.
This means that player 2’s overconfidence about her capability increases her effort in the one-shot
game, and she makes even more effort in the long run.
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the overconfident player’s payoff. The mechanism here is exactly the same as
the commitment effect in the Cournot model, i.e., one’s misspecification may in-
fluence the opponent’s behavior, which may improve the misspecified player’s
payoff. This result is in a sharp contrast with the single-agent case studied by Hei-
dhues, Kőszegi, and Strack (2018), where one’s overconfidence is always detri-
mental. In their model, the overconfident player reduces the effort just as in our
model, but it never improves the overconfident player’s payoff due to the lack of
the commitment effect.

Double Misspecification. Now we consider the case of double misspecifica-
tion, where player 1 is not aware of player 2’s overconfidence. We will focus on
Examples 1 and 2 above, and show that first-order misspecification and double
misspecification can have opposite effects on players’ actions and payoffs.

First, consider Example 1. This game is symmetric, in that Q(x1,x2,a,θ) =
Q(x2,x1,a,θ) and u1(x1,y) = u2(x1,y). As discussed in the Cournot model, in
such a case, the sign of the base misspecification effect−M2A

M22
−BR′23

M3A
M33

of double
misspecification coincides with that of first-order misspecification. So the over-
confident player 2 reduces the effort (i.e., ∂x∗2

∂A2
< 0) just as in the case of first-order

misspecification.
How does it influence player 1’s action? Under double misspecification, player

1’s long-run behavior is influenced by her incorrect learning: Player 1 is not aware
of the overconfident player reducing the effort, and thus observes outputs lower
than the anticipation on average. This makes her pessimistic about the state over
time, and she reduces the effort in the end. So in this example, one’s overconfi-
dence lowers both players’ efforts and payoffs.

Note that this result does not rely on whether efforts are complements or sub-
stitutes. This is in a sharp contrast with the case of first-order misspecification,
where an agent’s overconfidence improves her profit when the efforts are substi-
tutes. That is, first-order misspecification and double misspecification have op-
posite effects on the overconfident player’s payoff (and player 1’s action) when
k < 0.
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Next, consider Example 2. Here the difference between first-order misspec-
ification and double misspecification is even more striking, in that the base mis-
specification effects of these two misspecifications can have opposite signs. For
example, let Θ = [0.1,0.3], θ ∗ = 0.2, a = A1 = 1, and k = 4. Then at A2 = a, the
base misspecification effect of double misspecification is positive, and thus the
overconfident player 2 increases effort.28 Intuitively, in the case of double mis-
specification, player 2 (incorrectly) believes that player 1 is overconfident about a
and makes higher effort than in the reality. Because efforts are complements (re-
call k = 4), with this perception, player 2 makes more effort. Given the specified
parameters, this effect dominates all the other effects coming from the misspeci-
fication, so the overconfident player 2 makes higher effort in the steady state.

4.3 Bias Transmission and Self-fulfilling Prophecies

Recent evidence suggests that the gender gap in math achievement arises from
culture and social conditioning rather than from biological reasons (such as brain
functioning). For example, Lavy and Sand (2018) and Carlana (2019) find that the
gender gap in performance in math exam substantially increases when students are
assigned to math teachers with stronger gender stereotypes. In particular, Carlana
(2019) argues that this effect is at least partially driven by lower self-confidence
on math ability of female students who are exposed to gender-biased teachers.29

We will show that our framework is useful to explain such a bias transmission
from teachers to students.30

Suppose that player 1 (she) is a student and player 2 (he) is a teacher. The stu-

28In this case, M2A = − 1
44 , M22 = M33 = − 47

22 , BR′23 = 63
235 , and M3A = 39

220 . Hence, the base
misspecification effect of double misspecification is about 0.012.

29Relatedly, Gong, Lu, and Song (2018) report that a male math teacher in their survey is
more likely to question and praise male students than female students compared with a female
math teacher, and that having such a teacher lowers female students’ beliefs about gender-specific
capability: They find that female students who have a male math teacher are more likely to agree
with a question “boys are more talented in learning math than girls” than those who have a female
math teacher.

30See Giuliano (2020) for a survey of the transmissions of gender-biased norms and beliefs.
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dent’s achievement (e.g., math test performance) is given by y= a(x1+x2+b)+ε ,
where a > 0 represents a gender-specific capability and b > 0 is the student’s
own capability. The student knows her own capability b, but does not know
the gender-specific capability θ1. So she thinks that the outcome is given by
y = θ1(x1+x2+b)+ε and learns θ1 over time. On the other hand, the teacher has
a biased view about the gender specific capability, and he thinks that the outcome
is given by y= A2(x1+x2+θ2)+ε , where A2 < a represents his bias. He does not
know the student’s individual capability θ2, and learns it over time. We assume
that each player (incorrectly) thinks that the opponent has the same view about the
world. This means that the student is not aware of the teacher’s gender-stereotype
A2 < a.

This setup is different from the one presented in Section 3, in that different
players learn different parameters. However, this does not has a substantial impact
on the property of the steady state. Similarly to the analysis in Section 4.2, it
is straightforward to show that both the teacher and the student exert less effort
than in the correctly specified model in the steady state, and the student becomes
underestimating the gender-specific capability θ1.

A notable feature in this framework is that the student initially has an unbiased
view about the environment, but nonetheless, the teacher’s gender bias is eventu-
ally transmitted to the student.31 A key driving force is the student’s inferential
naivety; a biased teacher secretly reduces the effort, and the student is not aware
of it. Then on average, the realized outcomes are lower than the student’s expecta-
tion, which makes the student unrealistically pessimistic about the gender-specific
capability θ1.

31Heidhues, Kőszegi, and Strack (2020) also argue that a gender bias (more generally, a group
discrimination) can endogenously arise as a consequence of misspecified learning. Formally, they
develop a single-agent learning model, and show that an underconfident (resp. overconfident)
agent tends to underestimate (resp. overestimate) the capability of her in-group members. So in
their setup, the source of a group discrimination is one’s misconfidence about her own capability.
Our result complements their work by considering the case in which an agent does not have un-
derconfidence, or more generally, any bias about the physical environment. Our analysis shows
that one’s existing prejudice may induce other players’ negative self-stereotypes through learning.
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It seems that bias transmissions and self-fulfilling prophecies are as prevalent
in workplaces as they are in school classrooms. Livingston (1969) finds that a
manager’s high expectation of the subordinates improves the subordinates’ job
performance, and it is confirmed by many subsequent papers.32 This phenomenon
is known as the Pygmalion effect in management, and Eden (1984) and Davidson
and Eden (2000) argue that this effect stems from bias transmission: A manager’s
higher expectation raises workers’ beliefs about their own self-efficacy, which lead
them to greater motivation and achievement. 33 Our framework here is useful to
better understand why such a bias transmission occurs. Roughly speaking, if an
optimistic manager makes an extra effort and a worker is not (fully) aware of it,
then on average, the worker observes an output better than his expectation. This
makes the worker more confident of his own capability, which in turn improves
the outcome further.

If a manager is negatively biased, the mechanism above can work in the op-
posite direction. For example, Hoobler, Wayne, and Lemmon (2009) report that
in many industries, managers tend to think that female workers are unfit for pro-
motion compared to male workers. Our analysis suggests that such a bias can
be transmitted to female workers, and they become underconfident about their
own capabilities. This is consistent with the recent work by Born, Ranehill, and
Sandberg (forthcoming) who find that women are less confident than men in their
relative ability as being a leader position. This mechanism may help understand
why a “glass ceiling,” an invisible barrier that discourages women and minorities,
persists in various institutions.

32Kierein and Gold (2000) and McNatt (2000) provide meta-analysis results of the Pygmalion
effect in management. See Bertrand and Duflo (2017) for a survey of the self-fulfilling prophecies
in economics.

33Of course, there are other mechanisms which explain the correlation between a manager’s bias
and a worker’s performance. For example, Glover, Pallais, and Pariente (2017) find that minority
workers in French grocery stores tend to perform worse when they work with biased managers,
while working with biased managers does not activate self-stereotyping of the minority workers.
Glover, Pallais, and Pariente (2017) argue that this result can be explained by the fact that biased
managers are less comfortable around minorities: Such managers do not monitor minority workers
frequently and do not ask them to stay after the end of their shifts.

34



5 Related Literature and Conclusion

There is a rapidly growing literature on Bayesian learning with model misspec-
ification. Nyarko (1991) presents a model in which the agent’s action does not
converge. Fudenberg, Romanyuk, and Strack (2017) consider a general two-state
model and characterize the agent’s asymptotic actions and behavior. Heidhues,
Kőszegi, and Strack (2018, 2021) and He (2021) study a continuous-state setup,
and they show that the agent’s action and belief converge to a Berk-Nash equi-
librium of Esponda and Pouzo (2016), under some assumptions on payoffs and
information structure. Esponda, Pouzo, and Yamamoto (2021) characterize the
agent’s asymptotic behavior in a general single-agent model. Fudenberg, Lan-
zani, and Strack (2021) discuss robustness of steady states. All these papers look
at a single-agent problem and focus on first-order misspecification.

More recently, Ba and Gindin (2021) consider two-player team production
in which both players are overconfident about their own capability. They show
that if efforts are complements and information has a positive externality, then
learning is mutually reinforcing, i.e., one’s strategic play reduces both players’
efforts and results in a worse outcome. Our work strengthens their result, in
three ways. First, our Proposition 1 gives a necessary and sufficient condition
for mutually-reinforcing learning: When the base misspecification effect is neg-
ative, our proposition shows that player 1’s strategic play reduces both players’
efforts if and only if the two asymptotic best response curves are upward-sloping
(i.e., BR′1 > 0 and BR′2 > 0).34 Second, our Proposition 1 does not impose any
assumptions on payoffs and information structure, and allows us to study a wide
range of applications such as Cournot duopoly and tournaments. Third, and most
importantly, we develop a model of higher-order misspecification and study how
each type of misspecification influences players’ beliefs and actions.

Misspecified learning has also been studied in other settings. In the literature
on social learning, many papers study how inferential naivety or model misspecifi-
cation influences the asymptotic outcomes (e.g., DeMarzo, Vayanos, and Zwiebel,

34Strategic complementarity and positive information externality assumed by Ba and Gindin
(2021) imply upward-sloping asymptotic best response curves.
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2003; Eyster and Rabin, 2010; Gagnon-Bartsch and Rabin, 2016; Bohren and
Hauser, 2021; Frick, Iijima, and Ishii, 2020). Molavi (2020) considers a gen-
eral equilibrium model in which a representative agent has a misspecified view
about the world. Cho and Kasa (2017) study an asset-pricing model in which an
agent incorrectly believes that the environment is not stationary. Our model would
help investigate other applications, such as firm-consumer or principal-agent rela-
tionships under higher-order misspecification.
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Appendices

A Asymptotic Behavior of Misspecified Players
In this appendix, we will provide a general model which encompasses both first-
order misspecification and double misspecification as special cases, and show that
the motion of players’ action frequency is asymptotically approximated by a so-
lution to a differential inclusion. This result can be seen as a generalization of the
main theorem of Esponda, Pouzo, and Yamamoto (2021) to the case with multiple
players and continuous actions. Then we show that the motion of players’ beliefs
is also approximated by a solution to a differential inclusion. This result is new,
and we use it to derive a sufficient condition for belief convergence.

A.1 General Setup
For each compact set A ⊂ Rn (or more generally, separable metric space A), let
4A denote the set of probability measures over the set A. We consider the dual
bounded-Lipschitz norm on4A, that is, for each µ ∈4A, let

‖µ‖= sup
f∈BL(A)

∫
A

f dµ

where BL(A) is the set of bounded Lipschitz continuous functions f on A with
supx∈A | f (x)|+ supx,y

| f (x)− f (y)|
|x−y| ≤ 1. This norm has two nice properties. First,

it metrizes the weak topology, that is, the topology induced by the dual bounded-
Lipschitz norm coincides with the weak topology on4A. Second, with this norm,
4A is a compact subset of a Banach space, i.e., the set of finite signed measures on
A is a Banach space when paired with the dual bounded-Lipschitz norm, and4A is
a compact subset in it. See Dudley (1966) and Billingsley (1999) for references.
The first property is needed to obtain our Proposition 7. The second property
is crucial in order to use a stochastic approximation technique in the proof of
Proposition 8. The dual bounded-Lipschitz norm is used in Hofbauer, Oechssler,
and Riedel (2009) and Perkins and Leslie (2014), who study learning dynamics in
games with continuous actions.
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A.1.1 Objective World

There are two players i = 1,2 and infinitely many periods t = 1,2, · · · . In each
period t, each player i chooses an action xi from a compact set Xi ⊂ R. These
actions are not observable. Then they observe a noisy public output y ∈ Y which
is distributed according to a probability measure Q(·|x) ∈4Y , where x = (x1,x2)
denotes the chosen action profile. Each player i’s payoff is ui(xi,y).

In the infinite-horizon game, each player i’s t-period history is ht
i =(xτ

i ,y
τ)t

τ=1,
where (xt

i,y
t) is player i’s action and the public outcome in period t. Let Ht

i denote
the set of all t-period history, and let H0

i = { /0}. Player i’s pure strategy in the
infinite-horizon game is a mapping si :

⋃
∞
t=0 Ht

i → Xi. Let Si denote the set of
player i’s pure strategies. Let ht

Y = (yτ)t
τ=1 denote the t-period public history. A

strategy is public if it depends only on public histories.

A.1.2 Subjective World and Model Hierarchy

We assume that the output distribution Q is not common knowledge among play-
ers. Instead, each player i has a set Θi,1 of subjective models, and in each model
θi,1 ∈ Θi,1, the output distribution given an action profile x is Qθi,1(·|x). Player
i thinks that the true world is described by one of these models, and her initial
prior about the model is µi,1 ∈4Θi,1. Player i’s models are correctly specified if
there is θi,1 such that Q(·|x) = Qθi,1(·|x) for all x. Otherwise her models are mis-
specified. Player i also has models about the opponent j’s model, that is, player i
believes that the opponent j has an initial prior µi,2 over a model set Θi,2, where
each model θi,2 induces the output distribution Qθi,2(·|x) for each action profile x.
This triplet Mi,2 = (µi,2,Θi,2,(Qθi,2(·|x))(x,θi,2)) is player i’s second-order model in
that it is her subjective view about player j’s subjective model. More generally, we
assume that each player i has a model hierarchy Mi = (Mi,1,Mi,2, · · ·) where each
Mi,k = (µi,k,Θi,k,(Qθi,k(·|x))(x,θi,k)) is player i’s kth-order model. That is, player i
believes that player j believes that player i’s model is Mi,3, player i believes that
player j believes that player i believes that player j’s model is Mi,4, and so on.

This framework is flexible and allows us to study a variety of information
structures. For example, we obtain the model of first-order misspecification stud-
ied in Section 2 when M1,1 = M2,2 = M1,3 = M2,4 = M1,5 = · · · , M2,1 = M1,2 =
M2,3 = M1,4 = M2,5 = · · · , and M1,1 is correctly specified; here the first con-
dition implies that player 1’s model M1,1 is common knowledge, and the sec-
ond condition implies that player 2’s model M2,1 is common knowledge. Simi-
larly, we obtain the model of double misspecification studied in Section 3 when
Mi,1 = Mi,2 = Mi,3 = · · · for each i.
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In what follows, we will maintain the following technical assumptions.

Assumption 1. The following conditions hold:

(i) Y and Θ are Borel subsets of the Euclidean space, and Θ is compact.

(ii) There is a Borel probability measure ν ∈4Y such that Q(·|x) and Qθi,k(·|x)
are absolutely continuous with respect to ν for all x and i, k, and θi,k.
(An implication is that there are densities q(·|x) and qθi,k(·|x) such that∫

A q(y|x)ν(dy) = Q(A|x) and
∫

A qθi,k(y|x)ν(dy) = Qθi,k(A|x) for any A ⊆ Y
Borel.)

(iii) q(·|x) and qθi,k(·|x) are continuous in θ and x.

(iv) There is a function g : X ×Y → R such that (a) for each y, g(x,y) is contin-
uous in x, (b) g(x, ·) ∈ L2(Y,Q(·|x)) for each x, and (c) for all x, x̂ i, k, and
θi,k, log q(·|x)

qθi,k (·|x̂)
≤ g(x, ·) Q(·|x)-a.s..

The parts (i)-(iii) are fairly standard. The part (iv) implies that every outcome
y is generated by each player i’s model, which is useful to establish a uniform
version of the law of large numbers. The assumption above is similar to As-
sumptions 1 and 2 of Esponda, Pouzo, and Yamamoto (2021), but there are two
differences. First, we allow the action set Xi to be continuous, in which case we
require continuity of q, as described in parts (iii) and (iv-a). Second, we allow
inferential naivety, so when we consider the log-likelihood log q(·|x)

qθi,k (·|x̂)
of the true

output probability and the subjective probability, we distinguish the actual action
profile x from the inferred action profile x̂.

Recall that in the cases of first-order misspecification and double misspecifi-
cation, each player i believes that (i) her view Mi,1 about the world is common
knowledge (i.e., Mi,1 = Mi,3 = Mi,5 = · · · ) and that (ii) her view Mi,2 about the op-
ponent’s view about the world is common knowledge (i.e., Mi,2 = Mi,4 = Mi,6 =
· · · ). This ensures that player i’s decision making problem is equivalent to solving
a game played by this player i and a hypothetical player.35 In the general model
here, we will impose a (similar but) weaker assumption:

Assumption 2. Player i believes that the models (Mi,ki,Mi,ki+1) are common knowl-
edge after level ki <∞, that is, for each i, there is ki <∞ such that (Mi,ki,Mi,ki+1) =
(Mi,ki+2n,Mi,ki+1+2n) for each n = 1,2, · · · .

35In the case of first-order misspecification, this hypothetical player is redundant in that her
action coincides with the actual player’s action. So such a hypothetical player does not appear in
our analysis in Section 2.
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For the special case in which ki = 1, this assumption implies that player i
believes that the models (Mi,1,Mi,2) are common knowledge, just as in the case of
first-order misspecification and double misspecification. The assumption above is
more general than that, because it allows ki > 1; in such a case, the assumption
implies that player i believes that models are common knowledge at higher levels,
i.e., she believes that the opponent believes that · · · that the models (Mi,ki,Mi,ki+1)
are common knowledge. Note that this assumption is about whether player i
thinks that the models are common knowledge, and not about whether the models
are common knowledge in the objective sense. We believe that Assumption 2 is
satisfied in most applications.36

Pick ki as stated in Assumption 2. Then player i’s problem is strategically
equivalent to solving the following hypothetical game with ki +1 agents:

• Each period, each agent k = 1,2, · · · ,ki+1 chooses an action x̂i,k from a set
X̂i,k, where X̂i,k = Xi for odd k, and X̂i,k = X j for even k.

• Agent 1 is player i herself. She has the model Mi,1, and thinks that her
opponent is agent 2. That is, she thinks that the distribution of the public
outcome is Qθi,1(x̂i,1, x̂i,2) for some θi,1, where (x̂i,1, x̂i,2) is the action chosen
by agents 1 and 2.

• Other agents are hypothetical players appearing in player i’s reasoning.
Each agent k = 2,3, · · · ,ki + 1 has the model Mi,k, and thinks that her op-
ponent is agent k+ 1. That is, she thinks that the distribution of the public
outcome is Qθi,k(x̂i,k, x̂i,k+1) for some θi,k. Here, agent ki +2 refers to agent
ki, so agents ki and ki +1 play the game with each other.

• All the information structure above is common knowledge among the agents.

Intuitively, agent 1’s action x̂i,1 in this hypothetical game is player i’s actual action,
agent 2’s action x̂i,2 is player i’s prediction about the opponent j’s action, agent
3’s action x̂i,3 is player i’s prediction about j’s prediction about i’s action, and
so on. So the action profile x̂i = (x̂i,k)

ki+1
k=1 in this hypothetical game is essentially

player i’s prediction hierarchy. Let X̂i =×ki+1
k=1 Xi,k denote the set of all these action

profiles.

36This assumption is needed to establish Propositions 7 and 8. Indeed, if this assumption is
not satisfied, then we need infinite agents to describe player i’s reasoning, so the set X̂ becomes
the product of infinitely many X1 and X2. This set X̂ is not separable (it is well-known that the
l∞-space is not separable), so the dual bounded-Lipschitz norm on4X̂ may not coincide with the
topology of weak convergence.
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In what follows, each agent k in this hypothetical game is labelled as (i,k),
because these agents describe player i’s reasoning. The opponent j has a different
model hierarchy M j , Mi, and hence her reasoning is represented by a different
set of agents labelled as ( j,k).

Let ŝi,k denote agent (i,k)’s strategy in the infinite-horizon hypothetical game,
and let ŝi = (ŝi,k)

ki+1
k=1 denote a strategy profile. This profile ŝi is also interpreted

as player i’s prediction hierarchy about strategies in the infinite-horizon game.
That is, ŝi,1 is player i’s actual strategy, ŝi,2 is player i’s prediction about player j’s
strategy, and so on. So ŝi,k ∈ Si for odd k, and ŝi,k ∈ S j for even k. We assume that
each ŝi,k is pure and public.

Given a pure strategy profile ŝi = (ŝi,k) in the hypothetical game, each agent
k’s posterior belief µ̂

t+1
i,k ∈ 4Θi,k can be computed using Bayes’ rule, after every

public history ht
Y . Formally, for each t and k, we have

µ̂
t+1
i,k (θi,k) =

µ̂ t
i,k(θi,k)Qθi,k(y

t |ŝi,k(ht−1
Y ), ŝi,k+1(ht−1

Y ))∫
Θi,k

µ̂ t
i,k(θi,k)Qθi,k(y

t |ŝi,k(ht−1
Y ), ŝi,k+1(ht−1

Y ))dθi,k

where ŝi,ki+2 = ŝi,ki . Here we use the fact that agent k thinks that the signal yt in
period t is drawn given the action profile (ŝi,k(ht−1

Y ), ŝi,k+1(ht−1
Y )), where ŝi,k(ht−1

Y )

is her own action, and ŝi,k+1(ht−1
Y ) is the opponent k + 1’s action. The above

formula is valid only if no one deviates from the profile ŝi; if some agent k deviates,
then her posterior belief must be computed using a different formula. A strategy
profile ŝi is Markov if each agent’s strategy depends only on the belief hierarchy
µ̂ t

i , i.e., for each k and t, ŝi,k(ht
Y ) depends on ht

Y only through µ̂
t+1
i .

Example 1. (Myopically optimal agents) Suppose that the agents are myopic and
maximize their expected stage-game payoffs each period. In such a case, they
play a one-shot equilibrium given a belief-hierarchy µ̂ t in each period t. Recall
that each agent (i,k) thinks that her opponent is agent (i,k+1), so her subjective
expected stage-game payoff given a model θi,k is

Uθi,k(x̂i,k, x̂i,k+1) =
∫

Y
ui,k(x̂i,k,y)Qθi,k(dy|x̂i,k, x̂i,k+1)

where ui,k = u1 when i+k is even, and ui,k = u2 when i+k is odd. So the strategy
profile ŝi must satisfy the following equilibrium condition:

ŝi,k(µ̂i) ∈ arg max
x̂i,k∈X̂i,k

∫
Θi,k

Uθi,k(x̂i,k, ŝi,k+1(µ̂i))µ̂i,k(dθi,k) ∀k∀µ̂i. (15)

It is obvious that this strategy profile ŝi is Markov.
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Example 2. (Dynamically optimal agents) Now consider dynamically optimal
agents, who maximize the expectation of the discounted sum of the stage-game
payoffs, ∑

∞
t=1 δ t−1ui,k(x̂i,k,y). Many applied papers use Markov perfect equilibria

as a solution concept. In our context, ŝi is a Markov perfect equilibrium if given
any belief hierarchy µ̂i, the continuation strategy profile ŝi|µ̂i satisfies

ŝi,k|µ̂i ∈ argmax
ŝi,k

∫
Θi,k

∞

∑
t=1

δ
t−1E[Uθi,k(x̂

t
i,k,x

t
i,k+1)|ŝi,k, ŝi,k+1|µ̂i]µ̂i,k(dθi,k)

for each k, where the expectation is taken over (x̂t
i,k,x

t
i,k+1).

Let h=(xt ,yt)∞
t=1 denote a sample path (a history in the infinite-horizon game).

Also, let X̂ = X̂1× X̂2 be the product of the sets of all action profiles of the two
hypothetical games. Given a sample path h and given strategy profiles ŝ = (ŝ1, ŝ2)
of the two hypothetical games (for players 1 and 2), let σ t(h) ∈ 4X̂ denote the
action frequency up to period t, that is,

σ
t(h)[(x̂1, x̂2)] =

1
t

t

∑
τ=1

1{ŝi,k(h
τ−1
Y )=x̂i,k ∀i∀k}.

Intuitively, σ t(h)[(x̂1, x̂2)] describes how often the action profile x̂i was chosen in
each hypothetical game. (In other words, it describes how often each player i made
a prediction hierarchy x̂i.) Note that we cannot directly observe the actions x̂i,k of
the higher-level agents (i,k) with k≥ 2, as they are hypothetical agents. However,
since each agent uses a public strategy ŝi,k, we can back it up from the past public
history; given a history hτ−1

Y , the hypothetical agent k’s action in period τ must be
ŝi,k(hτ−1

Y ). This allows us to define the action frequency in the hypothetical game
as a function of the observed history h.

A.2 Posterior Beliefs and Kullback-Leibler Divergence
We first show that after a long time t, the posterior belief is concentrated on the
models which best explain the data. Specifically, we show that the belief is con-
centrated on the models which minimize the Kullback-Leibler divergence, which
is defined as follows. Let σ ∈ 4X̂ be a probability measure over X̂ . For each σ ,
the Kullback-Leibler divergence of model θi,k for agent k is defined as

Ki,k(θi,k,σ) =
∫

X̂

∫
Y

log
q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
Q(dy|x̂1,1, x̂2,1)σ(dx̂).
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Intuitively, Ki,k(θi,k,σ) measures the distance between the true output distribution
and the subjective distribution induced by agent k’s model θi,k. To see this, think
about the special case in which σ is a degenerate distribution 1x̂1,x̂2 . Then the
Kullback-Leibler divergence of model θi,k can be rewritten as∫

Y
log

q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
Q(dy|x̂1,1, x̂2,1).

This measures the distance between the true distribution q(·|x̂1,1, x̂2,1) and the sub-
jective distribution qθi,k(·|x̂i,k, x̂i,k+1) induced by the model θi,k. Indeed, this value
is always non-negative, and equals zero if and only if the true and subjective distri-
butions are the same. When σ is not a degenerate distribution, we take a weighted
sum of the Kullback-Leibler divergence over x̂ = (x̂1, x̂2), which leads to the defi-
nition of Ki,k(θi,k,σ) above.

As is clear from this formula, agent k’s subjective signal distribution qθi,k(y|x̂i,k, x̂i,k+1)
is potentially different from the true distribution q(y|x̂1,1, x̂2,1) in two ways. First,
agent k’s model θi,k can be misspecified in that the distribution qθi,k as a function
of the chosen action can be different from the true distribution q. Second, agent k
can have an inferential naivety. That is, while the true distribution is determined
by the actual actions chosen by players 1 and 2 (which is denoted by (x̂1,1, x̂2,1) in
our setup), agent k thinks that the output distribution is determined by the actions
chosen by agents k and k+1.

For each measure σ ∈4X̂ , let Θi,k(σ) denote the minimizers of the Kullback-
Leibler divergence, that is,

Θi,k(σ) = arg min
θi,k∈Θi,k

Ki,k(θi,k,σ).

Intuitively, this is the set of models which best explains the data when the past ac-
tion frequency was σ . The minimized Kullback-Leibler divergence is K∗i,k(σ) =

minθi,k∈Θi,k Ki,k(θi,k,σ). We first show that these minimizers have useful proper-
ties:

Lemma 1. For each i and k, (i) Ki,k(θi,k,σ)−K∗i,k(σ) is continuous in (θi,k,σ),
and (ii) Θi,k(σ) is upper hemi-continuous, non-empty, and compact-valued.

The following proposition shows that after a long time t, the posterior is con-
centrated on the best models Θi,k(σ

t). This extends Theorem 1 of Esponda,
Pouzo, and Yamamoto (2021) to the case with continuous action set Xi and with
multiple players. Let H denote the set of all sample paths h = (xt ,yt)∞

t=1. Given
strategy profiles ŝ, let Pŝ ∈ 4X denote the probability distribution of the sample
path h. Given a sample path h, let µ̂ t

i (h) denote the belief hierarchy in period t.
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Proposition 5. Given any i, k, and ŝ, Pŝ-almost surely, we have

lim
t→∞

∫
Θi,k

(Ki,k(θi,k,σ
t(h))−K∗i,k(σ

t(h)))µ̂ t+1
i,k (h)[dθi,k] = 0. (16)

Let H denote the set of sample paths h which satisfy (16). By Proposition 5,
Pŝ(H ) = 1.

A.3 Asymptotic Motion of Action Frequency
A.3.1 Stochastic Approximation and Differential Inclusion

Now we will show that given any Markov strategy ŝ, the asymptotic motion of the
action frequency σ t is approximated by a solution to a differential inclusion. Pick
a Markov strategy ŝ, and pick a sample path h ∈H . By the definition, the action
frequency in each period is written as

σ
t+1(h) =

t
t +1

σ
t(h)+

1
t +1

1ŝ(µ̂t+1(h)).

That is, the action frequency in period t + 1 is a weighted average of the past
action frequency σ t and today’s action 1ŝ(µ̂t+1(h)). In what follows, we will show
that this second term 1ŝ(µ̂t+1(h)) can be written as a function of σ t , so that σ t+1 is
determined recursively.

Pick an arbitrary small ε > 0. Then let Bε :4X̂ → ∏
2
i=1 ∏

ki+1
k=1 4Θi,k be the

ε-perturbed belief correspondence defined as

Bε(σ) =

{
µ̂

∣∣∣∣∀i∀k∫
Θi,k

(Ki,k(θi,k,σ)−K∗i,k(σ))µ̂i,k(dθi,k)≤ ε

}
.

Roughly, Bε(σ) is the set of all belief hierarchies µ̂ such that each µ̂i,k is concen-
trated on the best models Θi,k(σ) in the sense of (16), given the mixture σ .

Since h∈H , there is T such that for all t > T , µ̂ t+1(h)∈ Bε(σ
t). This in turn

implies that the action ŝ(µ̂ t+1) in period t+1 must be chosen from the ε-enlarged
policy correspondence Sε(σ

t), which is defined as

Sε(σ) = {ŝ(µ̂)|∀µ̂ ∈ Bε(σ)}

for each σ . This immediately implies the following result:
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Proposition 6. Pick a Markov strategy ŝ. Then given any h ∈ H , there is a
decreasing sequence {ε t}∞

t=1 with limt→∞ ε t = 0 such that

σ
t+1(h) ∈ t

t +1
σ

t(h)+
1

t +1
Sεt (σ t(h)).

This proposition implies that in a later period t, the action chosen in that period
is selected from the set Sε(σ

t) for small ε . Now we ask how this set looks like in
the limit as ε → 0. Given a Markov strategy ŝ, let

Ŝ(µ) =
{

x̂
∣∣∣x̂ = lim

n→∞
ŝ(µ̂n) for some (µ̂n)∞

n=1 with lim
n→∞

(µ̂n) = µ̂

}
for each µ . This Ŝ is an upper hemi-continuous policy correspondence induced
by ŝ. It is obvious that ŝ(µ̂) ∈ Ŝ(µ̂) for each µ̂ . Also a standard argument shows
that Ŝ is indeed upper hemi-continuous with respect to µ̂ . Note that Ŝ = ŝ if ŝ is
continuous. Then define

S0(σ) = {x̂ ∈ Ŝ(µ̂)|∀µ̂ ∈ B0(σ)}

where
B0(σ) = {µ̂|µ̂i,k ∈4Θi,k(σ) ∀i∀k}.

The following proposition shows that when ε → 0, the set Sε(σ) which appears
in the previous proposition is approximated by S0(σ).

Proposition 7. Sε(σ) is upper hemi-continuous in (ε,σ) at ε = 0. So with the
dual bounded-Lipschitz norm,4Sε(σ) is upper hemi-continuous at ε = 0.

Propositions 6 and 7 suggest that after a long time, the motion of the action
frequency is approximated by

σ
t+1(h) ∈ t

t +1
σ

t(h)+
1

t +1
S0(σ

t(h)),

which is equivalent to

σ
t+1(h)−σ

t(h) ∈ t
t +1

(S0(σ
t(h))−σ

t(h))

That is, the drift of the action frequency, σ t+1(h)−σ t(h), should be proportional
to the difference between today’s action chosen from S0(σ

t(h)) and the current ac-
tion frequency σ t(h). The next proposition formalizes this idea using the stochas-
tic approximation technique developed by Benaı̈m, Hofbauer, and Sorin (2005):
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It shows that the asymptotic motion of the action frequency is described by the
differential inclusion

σ̇(t) ∈4S0(σ(t))−σ(t). (17)

In this differential inclusion, the drift of the action frequency is4S0(σ(t))−σ(t),
rather than S0(σ(t))−σ(t). The reason is as follows. As will be shown in Proposi-
tion 8 below, the differential inclusion (17) approximates the motion of the action
frequency in the limit as the period length in the discrete-time model shrinks to
zero. This means that a small time interval [t, t + ε] in the continuous-time model
should be interpreted as a collection of arbitrarily many periods in the discrete-
time model. Suppose now that players’ beliefs are in a neighborhood of µ during
this time interval [t, t + ε]. In all periods included in this interval, players choose
an action profile from the set S0(µ), and in particular, if S0(µ) contains two or
more action profiles, then different action profiles can be chosen in different peri-
ods. Accordingly, the action frequency during this interval can take any value in
4S0(µ), as described by the differential inclusion (17).37

To state the result formally, we use the following terminologies, which are
standard in the literature on stochastic approximation. Let τ0 = 0 and τt = ∑

t
n=1

1
n

for each t = 1,2, · · · . Then given a sample path h, the continuous-time interpola-
tion of the action frequency σ t is a mapping w(h) : [0,∞)→4X̂ such that

w(h)[τt + s] = σ
t(h)+

τ

τt+1− τt
(σ t+1(h)−σ

t(h))

for all t = 0,1, · · · and τ ∈ [0, 1
t+1). Intuitively, w represents the motion of the

action frequency as a piecewise linear path with re-indexed time. A mapping
σ : [0,∞)→ 4X̂ is a solution to the differential inclusion (17) with an initial
value σ ∈ 4X̂ if it is absolutely continuous in all compact intervals, σ(0) = σ ,
and (17) is satisfied for almost all t. Since4S0(σ) is upper hemi-continuous with
closed convex values, given any initial value σ ∈ 4X̂ , the differential inclusion
(17) has a solution. (See Theorem 9 of Deimling (1992) on page 117.) Let Z(σ)
denote the set of all these solutions.

Proposition 8. Pick a Markov strategy ŝ. Then for any T > 0 and any sample
path h ∈H ,

lim
t→∞

inf
σ∈Z(w(h)[t])

sup
τ∈[0,T ]

‖w(h)[t + τ]−σ(τ)‖= 0.

37There is also a technical reason: In the proof of Proposition 8, we apply the stochastic ap-
proximation method of Benaı̈m, Hofbauer, and Sorin (2005), which requires that the drift term be
a convex-valued (and upper hemi-continuous) correspondence. So we need to convexify the drift
term by taking4S0(σ(t)), rather than S0(σ(t)).
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A.3.2 Steady State and Generalized Berk-Nash Equilibrium

σ ∈ 4X̂ is a steady state of the differential inclusion (17) if σ ∈ 4S0(σ). The
following proposition shows that if the action frequency σ t converges, then its
limit point must be a steady state. The proof is exactly the same as Proposition 1
of EPY, and hence we omit it.

Proposition 9. Pick a Markov strategy s. Then for each sample path h ∈H , if
the action frequency σ t(h) converges, then its limit point limt→∞ σ t(h) is a steady
state of (17).

In all the examples in this paper, we assume that the agents are myopic so
that the strategy profile ŝ satisfies (15). In this special case, steady states of our
differential inclusion are generalized Berk-Nash equilibria in the following sense:

Definition 3. A probability measure σ ∈4X̂ is a generalized Berk-Nash equilib-
rium (GBNE) if for each pure action profile x̂ = (x̂1, x̂2) in the support of σ , for
each i and for each k, there is a belief µ̂i,k ∈4Θi,k(σ) such that

x̂i,k ∈ argmax
x̂′i,k

∫
Θi,k

Uθi,k(x̂
′
i,k, x̂i,k+1)µ̂i,k(dθi,k).

A generalized Berk-Nash equilibrium is degenerate if it is a point mass on some
pure action profile x̂.

In words, in a generalized Berk-Nash equilibrium σ , each action profile x̂
which has a positive weight in σ is a one-shot equilibrium for some belief µ̂ , and
this belief µ̂ is concentrated on the models Θi,k(σ) which minimize the Kullback-
Leibular divergence. In a non-degenerate GBNE which assign positive weights on
multiple action profiles x̂, different action profiles x̂ may be supported by different
beliefs µ̂ .

Proposition 10. Suppose that the strategy profile ŝ satisfies (15). Then any steady
state of our differential inclusion (17) is a generalized Berk-Nash equilibrium. So
for each sample path h ∈H , if the action frequency σ t(h) converges, then its
limit point limt→∞ σ t(h) is a generalized Berk-Nash equilibrium.

Note that the action frequency may converge to non-degenerate equilibrium
σ , which assigns positive probability to multiple action profiles x̂. An intuition is
as follows. If the action frequency σ t converges to some σ , then from Proposition
5, the posterior belief µ̂ t will be concentrated on 4Θ(σ) after a long time, that
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is, µ̂ t is in a neighborhood of 4Θ(σ) for large t. If all the beliefs in this neigh-
borhood induce the same equilibrium action x̂ (i.e., ŝ(µ̂) = x̂ for all beliefs µ̂ in a
neighborhood of4Θ(σ)), then the action frequency will eventually converge to a
point mass on x̂. But in general, this need not be the case; different beliefs µ̂ and
µ̂ ′ in this neighborhood may induce different equilibrium actions x̂ and x̂′. In such
a case, both x̂ and x̂′ can be chosen infinitely often on the path, and hence have
positive weights in the limiting action frequency σ .

Note, however, that in many applications, all GBNE are degenerate. Indeed, if
(i) there is a unique equilibrium x̂ for each belief µ̂ and (ii) identifiability holds in
that there is a unique minimizer θi,k of the Kullback-Leibular divergence for each
action frequency σ , then obviously any GBNE is degenerate. All our examples in
the paper satisfy these assumptions.

Proposition 10 above implies that when agents are myopic, a limiting action
frequency must be a GBNE. It turns out that the same result holds for dynami-
cally optimal agents, provided that identifiability holds and agents play a Markov
perfect equilibrium. This follows from the fact that under identifiability, the differ-
ential inclusion (17) for myopic agents is exactly the same as that for dynamically
optimal agents who play a Markov perfect equilibrium. So all the results pre-
sented i the main text of the paper area valid for dynamically optimal agents, as
long as identifiability holds.

A.4 Motion of the KL Minimizer
A.4.1 Identifiability and Differential Inclusion

Our Proposition 8 shows that the asymptotic motion of the action frequency σ t is
described by the differential inclusion (17). However, solving the differential in-
clusion (17) is not easy in general. For example, in many applications (including
the ones in this paper), there are continuous actions, in which case the action fre-
quency σ t is a probability distribution over an infinite-dimensional (continuous)
space, and thus the differential inclusion becomes an infinite-dimensional prob-
lem. In this section, we show that this dimensionality problem can be avoided
if we look at the asymptotic motion of the belief, rather than that of the action
frequency.

We will impose the following identifiability assumption, which requires that
there be a unique KL minimizer θi,k(σ) for each measure σ ∈4X̂ . This assump-
tion is satisfied in many applications, see Esponda and Pouzo (2016) for more
detailed discussions on this assumption.
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Assumption 3. For each i, k, and σ , there is a unique minimizer θi,k(σ) ∈Θi,k of
the Kullback-Leibular divergence Ki,k(θi,k,σ).

Since Θi,k(σ) is upper hemi-continuous in σ , under the identifiability assump-
tion, each KL minimizer θi,k(σ) is continuous in σ . The next lemma shows that
θ(σ) = (θi,k(σ))i,k is Lipschitz continuous if some additional assumptions hold.
With an abuse of notation, let Ki,k(θi,k, x̂) = Ki,k(θi,k,σ) for σ = 1x̂.

Assumption 4. The following conditions hold:

(i) For each i, k, and m, ∂Ki,k(θi,k,x̂)
∂θi,k,m

< ∞, where θi,k,m denotes the m-th compo-
nent of θi,k. Also for each x̂, Ki,k(θi,k, x̂) is twice-continuously differentiable

with respect to θi,k, that is, ∂ 2Ki,k(θi,k,x̂)
∂θi,k,m∂θi,k,n

is continuous in θi,k.

(ii) ∂Ki,k(θi,k,x̂)
∂θi,k,m

is equi-Lipschitz continuous, that is, there is L > 0 such that

|∂Ki,k(θi,k,x̂)
∂θi,k,m

− ∂Ki,k(θi,k,x̂′)
∂θi,k,m

|< L|x̂− x̂′| for all i, k, m, θi,k, x̂, and x̂′.

(iii) The KL minimizer θ(σ) satisfies both the first-order and second-order con-
ditions for each σ . (An implication is that the inverse of the Hessian matrix
exists.)

Lemma 2. θ(σ) is Lipschitz continuous in σ . That is, there is L > 0 such that
|θ(σ)−θ(σ̃)| ≤ L‖σ − σ̃‖.

Now we consider the motion of the KL minimizer θ t = (θ t
i,k)i,k. Let wθ denote

the continuous-time interpolation of θ t . Let ∇Ki,k(θi,k,x) = (
∂Ki,k(θi,k,x)

∂θi,k,m
)m, and

∇K(θ ,x) = (
∂Ki,k(θi,k,x)

∂θi,k,m
)i,k,m. Also let ∇2Ki,k(θi,k,σ) denote the Hessian matrix

of Ki,k(θi,k,σ) with respect to θi,k, that is, each component of ∇2Ki,k(θi,k,σ) is
∂ 2Ki,k(θi,k,σ)
∂θi,k,m∂θi,k,n

. Let ∇2K(θ ,σ) denote a block diagonal matrix whose main diagonal

blocks are ∇2Ki,k(θi,k,σ), that is,

∇
2K(θ ,σ) =

 ∇2K1,1(θ1,1,σ) 0
∇2K1,2(θ1,2,σ)

0 . . .

 .
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With an abuse of notation, let S0(θ) denote S0(σ) for σ with θ(σ) = θ . The
following proposition shows that the asymptotic motion of the KL minimizer is
described by the differential inclusion

θ̇(t) ∈
⋃

σ :θ(σ)=θ(t)

⋃
σ ′∈4S0(θ(t))

−(∇2K(θ(t),σ))−1 (
∇K(θ(t)),σ ′)

)
. (18)

Let Zθ (θ(0)) be the set of solutions to the differential inclusion (18) with the initial
value θ(0).

Proposition 11. Suppose that Assumptions 3 and 4 hold. Then for any T > 0 and
any sample path h ∈H ,

lim
t→∞

inf
θ∈Zθ (wθ (h)[t])

sup
τ∈[0,T ]

|wθ (h)[t + τ]−θ(τ)|= 0.

To interpret the differential inclusion (18), consider the special case in which
Θi,k ⊂ R, i.e., assume that agent k’s model θi,k is one-dimensional. Then from
(17), we have

θ̇i,k(t) ∈
⋃

σ :θ(σ)=θ(t)

⋃
σ ′∈4S0(θ(t))

−
K′i,k(θi,k(t),σ

′)

K′′i,k(θi,k(t),σ)
(19)

for each i and k, where K′i,k(θ ,σ) =
∂Ki,k(θ ,σ)

∂θ
and K′′i,k(θ ,σ) =

∂ 2Ki,k(θ ,σ)

∂θ 2 .
The denominator K′′i,k(θi,k(t),σ) measures the curvature of the Kullback-Leibular

divergence. Note that this term is always positive, because the second-order con-
dition must be satisfied (Assumption 4(iii)). So this term influences the absolute
value of θ(t), but not the sign of θ̇i,k(t); this in turn implies that this denominator
influences the speed of θi,k(t), but not the direction. Intuitively, when the curve
is flatter (i.e., K′′i,k is close to zero), all models in a neighborhood of θ(t) almost
equally fit the past data. Hence the KL minimizer θ(t) is more sensitive to the new
data generated by today’s action, and it changes quickly.

The numerator −K′i,k(θi,k(t),σ
′) measures how much an increase in θi,k im-

proves fitness to the new data generated by today’s action σ ′. This term influences
the sign of θ̇i,k(t), so it determines whether θi,k(t) moves up or down. Intuitively,
when this numerator is positive, (at least in a neighborhood of θ(t)) higher θ bet-
ter explains the new data generated by today’s action, so θ(t) moves up. On the
other hand, when this numerator is negative, lower θ better explains the new data,
so θ(t) moves down.
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When we consider the dynamic of θ t = θ(σ t), the drift of θ t cannot be
uniquely determined, for two reasons. First, the KL minimizer θ t may not uniquely
determine the agents’ actions today, in the sense that S0(θ

t) may not be a single-
ton. (As pointed out by Esponda, Pouzo, and Yamamoto (2021), in the single-
agent setup, this happens when the agent is indifferent over multiple actions at a
model θ = θ t .) In our differential inclusion (19), this multiplicity is captured by
taking the union over σ ′ ∈ 4S0(θ(t)). Note that the same multiplicity problem
appears in the differential inclusion (17).

Second, the KL minimizer θ t may not uniquely determine the past action fre-
quency, in the sense that there may be more than one σ such that θ(σ) = θ t .
Note that even if two action frequencies σ and σ̃ yield the same KL minimizer
(i.e., θ(σ) = θ(σ̃)), they may yield different curvatures of the KL divergence, so
they influence the speed of θi,k(t) differently. In our differential inclusion, this
multiplicity is captured by taking the union over σ with θ(σ) = θ(t).

B Proofs

B.1 Proof of Proposition 1
Pick x∗ and A∗ as stated. Since the steady-state actions (x∗1,x

∗
2) are interior points,

they must satisfy the first-order conditions

∂U1(x1,x∗2,θ
∗)

∂x1
= 0, (20)

∂U2(x∗1,x2,θ)

∂x2

∣∣∣∣
θ=θ2(x∗,A)

= 0. (21)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text. That is,

M =

[
M11 M12

M21 M22

]

Since BR′1BR′2 , 1, we have detM , 0, so the implicit function theorem guarantees
that for any parameter A close to A∗, there is an action profile x∗ which satisfies
the first-order conditions (20) and (21). These action profiles are globally optimal
(i.e., maximize the expected payoff given the belief θ1 = θ ∗ and θ2(x∗,A)), be-
cause of the regularity conditions (i) and (ii). So this x∗ is a steady state given the
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parameter A. The implicit function theorem also asserts that[
M11 M12

M21 M22

][
∂x∗1
∂A
∂x∗2
∂A

]
=−

[
0

M2A

]
,

Solving this system of equations,

∂x∗2
∂A

=−M11M2A

detM
,

∂x∗1
∂A

=
M12M2A

detM
.

Dividing both the numerator and denominator of the first equation by M11M22

and using detM = M11M22−M12M21, we have ∂x∗2
∂A = − 1

1−BR′1BR′2
M2A
M22

. Also by

combining the two equations above, we have ∂x∗1
∂A = BR1

∂x∗2
∂A .

Next, we prove BR′1BR′2 < 1 by contradiction. Suppose that BR′1BR′2 > 1. Then
we have either (i) BR′1 > 0 and BR′2 > 0, or (ii) BR′1 < 0 and BR′2 < 0. Consider
case (i). Then we have BR′2 > 1

BR′1
> 0. This means that if we take x1 on the

horizontal axis and x2 on the vertical axis, then the two asymptotic best response
curves are upward-sloping at the steady state action x∗, and BR2 is steeper than
BR1. This and the continuity of BRi imply that BR1 and BR2 must intersect at some
x1 > x∗1, but this contradicts with the fact that x∗ is a unique steady state. The same
argument works for case (ii). Hence, we have BR′1BR′2 ≤ 1. Also, dividing both
sides of detM , 0 by M11M22, we have BR′1BR′2 , 1. Q.E.D.

B.2 Proof of Corollary 1
Immediate from Proposition 1. Q.E.D.

B.3 Proof of Proposition 2
In this proof, we will use the tools developed in Section A. Let h = (xt ,yt)∞

t=1
denote a sample path of the infinite horizon game. Given a sample path h, let
σ t(h) ∈4X denote the action frequency up to period t, i.e.,

σ
t(h)[x] =

|{τ ≤ t|xt = x}|
t
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for each action profile x. Proposition 5 shows that almost surely, each player i’s
belief in a later period t will be concentrated on the minimizer of the KL diver-
gence (the surprise function) with weight σ t−1. More formally, there is a set H
of sample paths such that a sample path h must be in this set H with probability
one, and such that for any sample path h ∈H , each player i’s belief in period t is
approximately 1θi(σ t−1(h)) for large t. This result immediately implies that player 1
correctly learns the true state θ ∗, as her KL minimizer is constant and θ1(σ) = θ ∗

for any frequency σ ∈4X .
We will show that player 2’s belief also converges to the steady-state belief

almost surely. For this, it suffices to show that for every sample path h ∈H , her
KL minimizer θ2(σ

t(h)) converges to the steady state. In what follows, we will
prove a bit stronger result; we allow multiple steady states, and show that for each
sample path h∈H , limt→∞ d(σ t(h),E2) = 0 where E2 is the set of all steady-state
beliefs θ of player 2. This implies that player 2’s belief converges even when the
steady state is not unique.

So pick an arbitrary sample path h ∈H . To think about a dynamic of the KL
minimizer θ t

2(h) = θ2(σ
t(h)), Proposition 11 is useful; it shows that the motion

of θ t
2 is asymptotically approximated by the differential inclusion (19), which

reduces to the one-dimensional differential inclusion

θ̇2(t) ∈
⋃

σ :θ(σ)=θ(t)

−
K′2(θ2(t),s(1θ∗,1θ2(t)))

K′′2 (θ2(t),σ)
(22)

where K′2 = ∂K2
∂θ

and K′′2 = ∂ 2K2
∂θ 2 . Here we ignore the dynamic of player 1’s KL

minimizer θ1, as it is constant and θ1(σ) = θ ∗ for all σ . With an abuse of notation,
let Zθ (θ) denote the set of solutions to the differential inclusion above with an
initial value θ ∈Θ.

We will consider the following two cases separately.

B.3.1 Case 1: liminft→∞ θ t
2(h) , limsupt→∞ θ t

2(h).

We will show that [liminft→∞ θ t
2(h), limsupt→∞ θ t

2(h)]⊆ E2.
Suppose not, so that there is a model θ ′ ∈ [liminft→∞ θ t

2(h), limsupt→∞ θ t
2(h)]

such that θ ′ <E2. Then K′2(θ
′,s(1θ∗ ,1θ ′)), 0, meaning that (i) K′2(θ

′,s(1θ∗,1θ ′))>
0 or (ii) K′2(θ

′,s(1θ∗,1θ ′))< 0. In what follows, we will focus on the case (i). The
proof for the case (ii) is symmetric.

Since K′2(θ ,σ) is continuous in (θ ,σ) and s(1θ∗,1θ ) is continuous in θ , there
is ε > 0 such that K′2(θ ,s(1θ∗,1θ ))> 0 for any θ with |θ−θ ′| ≤ ε . Pick such ε >
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0. Then the right-hand side of (22) is positive for any θ(t) in the ε-neighborhood
of θ ′, which means that θ(t) increases as time goes in this neighborhood.38 Hence
there is T > 0 such that

θ2(t)≥ θ
′+ ε (23)

for any t ≥ T and for any solution θ2 ∈ Zθ (θ) to the differential inclusion with
any initial value θ with θ ≥ θ ′2− ε . Pick such T .

With an abuse of notation, let wθ (t) denote the continuous-time interpolation
of the KL minimizer (θ t

2(h))
∞
t=1. From Proposition 11, there is t∗ such that for any

t > t∗, θ2 ∈ Zθ (wθ (t)), and s ∈ [0,2T ],

|wθ (t + s)−θ2(s)|<
ε

2
. (24)

Pick such t∗. Since θ ′ ≤ limsupt→∞ θ t
2(h), there is t∗∗ > t∗ such that wθ (t∗∗) ≥

θ ′− ε . Pick such t∗∗. Then from (23), we have

θ2(s)≥ θ
′+ ε

for any s ≥ T and for any solution θ ∈ Zθ (wθ (t∗∗)). This inequality and (24)
implies

wθ (t∗∗+ s)≥ θ
′+

ε

2
∀s ∈ [T,2T ].

Likewise, since wθ (t∗∗+T )≥ θ ′+ ε

2 , it follows from (23) that

θ2(s)≥ θ
′+ ε

for any s≥ T and for any solution θ2 ∈ Zθ (wθ (t∗∗+T )). This inequality and (24)
implies

wθ (t∗∗+ s)≥ θ
′+

ε

2
∀s ∈ [2T,3T ].

Iterating this argument, we can show that

wθ (t∗∗+ s)≥ θ
′+

ε

2
∀s ∈ [T,∞).

But this means that liminft→∞ θ t
2(h)≥ θ ′+ ε

2 , which is a contradiction.

38Note that K′′ < 0 because K is convex.
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B.3.2 Case 2: liminft→∞ θ t
i,k(h) = limsupt→∞ θ t

i,k(h).

In this case, limt→∞ θ t
i,k(h) exists. Let θ ∗i,k = limt→∞ θ t

i,k(h). We will show that
θ ∗i,k ∈ E.

Suppose not so that θ ∗ < E. Then as in the previous case, (i) K′i,k(θ
∗
i,k,σ

′)> 0
for all σ ′ ∈ 4S0(θ(θ

∗
i,k)), or (ii) K′i,k(θ

∗
i,k,σ

′) < 0 for all σ ′ ∈ 4S0(θ(θ
∗
i,k)). We

will focus on the case (i).
As in the previous case, there is ε > 0 such that K′i,k(θi,k,σ

′) > 0 for any θi,k

with |θi,k− θ ∗i,k| ≤ ε and any σ ′ ∈ 4S0(θ(θi,k)). Pick such ε > 0. Then pick T
such that (23) holds for any t ≥ T and for any solution θ ∈ Zθ (θ(θi,k)) with any
θi,k with θi,k ≥ θ ∗i,k− ε .

From Proposition 11, there is t∗ such that (24) holds for any t > t∗, θ ∈
Z′

θ
(wθ (t)), and s ∈ [0,2T ]. Pick such t∗. Since θ ∗i,k = limt→∞ θ t(h), there is

t∗∗ > t∗ such that wθ ,i,k(t∗∗) ≥ θ ∗i,k− ε . Pick such t∗∗. Then as in the previous
case, we can show that

wθ ,i,k(t∗∗+ s)≥ θ
∗
i,k +

ε

2
∀s ∈ [T,∞).

But this means that limt→∞ θ t
i,k(h)≥ θ ∗i,k +

ε

2 , which is a contradiction. Q.E.D.

B.4 Proof of Proposition 3
Pick A∗ and x∗ as stated. Since x∗ is an interior point, it must satisfy the first-order
conditions

∂U1(x1, x̂∗2,θ1)

∂x1
= 0, (25)

∂U2(x̂∗1,x2,θ2)

∂x2
= 0, (26)

∂Û1(x̂1,x∗2,θ2)

∂ x̂1
= 0, (27)

∂Û2(x∗1, x̂2,θ1)

∂ x̂2
= 0. (28)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text.

By the regularity condition (iii), detM , 0, so the implicit function theorem
guarantees that for any parameter A2 close to A∗2, there is an action profile x∗ which

59



satisfies the first-order conditions (25)-(28). These action profiles are globally
optimal, because of the regularity conditions (i) and (ii). So this x∗ is a steady
state given the parameter A. The implicit function theorem also asserts that


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44




∂x∗1
∂A2
∂x∗2
∂A2
∂ x̂∗1
∂A2
∂ x̂∗2
∂A2

=−


0

M2A

M3A

0

 ,

Solving this system and using M13 = M24 = M34 = M43 = 0,

∂x∗2
∂A2

=
(M14M41M33−M11M33M44)M2A +(M11M23M44−M23M14M41)M3A

detM
∂x∗1
∂A2

=
(M12M33M44−M33M42M14)M2A− (M23M44M12−M23M42M14)M3A

detM
.

Dividing both the numerator and the denominator of the first equation by M11M22M33M44,

∂x∗2
∂A2

=−
{
(1−BR14BR41)

M2A

M22
+(BR23−BR23BR14BR41)

M3A

M33

}
M11M22M33M44

detM

=− (1−BR14BR41)
M11M22M33M44

detM

(
M2A

M22
+BR23

M3A

M33

)
.

Note that

detM =M11M22M33M44 +M14M21M33M42−M14M22M33M41−M12M21M33M44

−M11M23M32M44−M14M23M31M42 +M14M23M32M41 +M12M23M31M44,

so

M11M22M33M44

detM
=

1
(1−BR′14BR′41)(1−BR′23BR′32)− (BR′12 +BR′14BR′42)(BR′21 +BR′23BR′31)

=

(
1

(1−BR′14BR′41)(1−BR′23BR′32)

)(
1

1−NE ′1NE ′2

)
Plugging this into the equation above, we obtain the first equation in the proposi-
tion. The second equation can be derived in a similar way. Q.E.D.
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B.5 Proof of Proposition 4
We use the tools developed in Section A. Recall that under double misspecifica-
tion, there are two real players and two hypothetical players. Let x=(x1,x2, x̂1, x̂2)
denote the action profile of these players, and given a sample path h = (xt ,yt)∞

t=1,
let σ t(h)∈4(X1×X2×X1×X2) denote the action frequency up to period t. Note
that this σ t(h) contains information about the past actions of the real players and
the hypothetical players.

Proposition 5 shows that after a long time, each player i’s posterior belief
will be concentrated on the KL minimizer θ t

i = θi(σ
t(h)). Also Proposition 11

shows that the motion of these KL minimizers, (θ t
1,θ

t
2), is approximated by the

differential inclusion (19), which can be rewritten as the two dimensional problem(
dθ1(t)

dt
,
dθ2(t)

dt

)
∈

⋃
σ :θ(σ)=θ(t)

(
−

K′1(θ1(t),s(θ1(t),θ2(t)))
K′′1 (θ2(t),σ)

,−
K′2(θ2(t),s(θ1(t),θ2(t)))

K′′2 (θ̂1(t),σ)

)
(29)

where s(θ1,θ2) denotes a static equilibrium x = (x1,x2, x̂1, x̂2) given the beliefs
(θ1,θ2, θ̂1, θ̂2) with θ̂1 = θ2 and θ̂2 = θ1.

In what follows, we will show that regardless of the initial value, any solution
to the differential inclusion (29) converges to the steady state after a long time.
This implies that the steady state is globally attracting in the sense of Esponda,
Pouzo, and Yamamoto (2021), and their Proposition 2 ensures that θ t converges
there almost surely, as desired.

The following lemma partially characterizes the solution to the differential
inclusion (29): It shows that θ2(t) moves toward f2(θ1(t)) at any time t.

Lemma 3. Pick any initial value θ(0) = (θ1(0),θ2(0)) and any solution θ =
(θ1,θ2) to the differential inclusion (29). Then for any t ≥ 0 with θ2(t)> f2(θ1(t)),
we have θ̇2(t) < 0. Similarly, for any t ≥ 0 with θ2(t) < f2(θ1(t)), we have
θ̇2(t)> 0

Proof. We will prove only the first part of the lemma, because the proof of the
second part is symmetric. Suppose that θ2(t)> f2(θ̂1(t)) at some time t. To prove
θ̇2(t)< 0, it suffices to show that K′2(θ2(t),s(t))> 0, where s(t) denotes the static
equilibrium s(θ1(t),θ2(t)) in time t.

Suppose not and K′2(θ2(t),s(t))< 0. (We ignore the case with K′2(θ2(t),s(θ1(t),θ2(t)))=
0, because in such a case, θ2(t)∈ f2(θ1(t)), which contradicts with the uniqueness
of f2(θ1(t)).) We consider the following two cases:
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Case 1: θ2(t) = θ . In this case, the KL minimizer given the equilibrium s(t)
is θ2(s(t)) = θ = θ2(t) (this follows from the fact that the KL divergence K2 is
single-peaked w.r.t. θ2). Hence θ2(t) = θ is a steady state, i.e., θ2(t) ∈ f2(θ1(t)).
But this contradicts with the uniqueness of f2(θ1(t)).

Case 2: θ2(t) < θ . An argument similar to that in Case 1 shows that at
θ2 = θ , we have K′2(θ ,s(θ1(t),θ)) > 0. On the other hand, by the assumption,
K′2(θ2(t),s(θ1(t),θ2(t))) < 0. Then since K′2(θ ,s(θ1(t),θ)) is continuous in θ ,
there must be θ ∈ (θ2(t),θ) such that K′2(θ ,s(θ1(t),θ)) = 0. This implies that
θ ∈ f2(θ1), but it contradicts with the uniqueness of f2(θ1). Q.E.D.

Now we will construct a Lyapunov function V to show that any solution to the
differential inclusion (29) converges to the steady state. Without loss of generality,
assume that the steady state is (θ ∗1 ,θ

∗
2 ) = (0,0). From assumption (iii), there

is κ > 0 such that maxθ1 |
f2(θ1)
∂θ1
| < κ < 1

maxθ2 |
f1(θ2)
∂θ2
|
. Pick such κ , and for each

θ = (θ1,θ2), let
V (θ) = max

{
|θ2|, |κθ̂1|

}
.

We will show that given any initial value θ(0) and given any solution θ to the
differential inclusion (18),

V̇ (θ(t))< 0

for all t with θ(t) , (0,0). We will consider the following cases separately:
Case 1: |θ2(t)|> |κθ1(t)|. Assume first that θ2(t)> 0. Then by the definition

of κ and f2(0) = 0, we have f2(θ1(t)) < |κθ1(t)| < θ2(t). Then from Lemma 3
and θ2(t)> 0, we have V̇ (θ(t)) = θ̇2(t)< 0.

Assume next that θ2(t) < 0. By the definition of κ and f2(0) = 0, we have
f2(θ̂1(t)) > −|κ θ̂1(t)| > θ2(t). Then from Lemma 3 and θ2(t) < 0, we have
V̇ (θ(t)) =−θ̇2(t)< 0.

Case 2: |θ2(t)|< |κθ1(t)|. An argument similar to those for Case 1 shows that
V̇ (θ(t))< 0.

Case 3: |θ2(t)| = |κθ1(t)|. We will focus on the case with θ2(t) > 0 and
θ1(t) > 0, because a similar argument applies to all other cases. Then as in the
first half of Case 1, we have θ̇2(t) < 0. Also, a similar argument shows that
θ̇1(t)< 0. Hence we have V̇ (θ(t)) = {θ̇2(t),κ θ̇1(t)}< 0. Q.E.D.
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B.6 Proof of Corollary 2
Consider the infinite-horizon model with first-order misspecification. Let Mii, Mi j
be the ones in Proposition 1. Then we have

Mii = 2Qx + xiQxx− c′′ < 0,

Mi j = Qx + xiQxx < 0,

−M2A

M22
=−

x∗2QA

M22

(
QxA

QA
− Qxθ

Qθ

)
.

The first two inequalities imply Mii < Mi j < 0, and hence we have BR′1 =−
M12
M11
∈

(−1,0) and 1
1−BR′1BR′2

> 1. Thus it follows from Proposition 1 that sgn∂x∗2
∂A =

sgn
(
−∂x∗1

∂A

)
= sgn

(
QxA
QA
− Qxθ

Qθ

)
and |∂x∗2

∂A |> |
∂x∗1
∂A |.

For payoffs, note that at A = a, we have

∂π∗i
∂A

=
∂π∗i
∂xi

∂x∗i
∂A

+
∂π∗i
∂x−i

∂x∗−i

∂A
=

∂π∗i
∂x−i

∂x∗−i

∂A
= x∗i Qx

∂x∗−i

∂A
,

where the second inequality follows from ∂π∗i
∂xi

= 0. Since x∗1 = x∗2 at A = a and

Qx < 0, we have sgn∂x∗2
∂A = sgn∂π∗2

∂A = sgn
(
−∂π∗1

∂A

)
and |∂π∗1

∂A |> |
∂π∗2
∂A |. Q.E.D.

B.7 Proof of Corollary 3
We first prove a lemma which is useful to analyze a symmetric game, where
X1 = X2, u1(x1,y) = u2(x2,y) for all x1 and x2 with x1 = x2, and Q(x1,x2,a,θ) =
Q(x2,x1,a,θ). Let xcorrect

i and πcorrect denote firm i’s steady-state action and pay-
off in the correctly specified model. Let xfirst denote the steady-state action profile
for first-order misspecification, where player 1 believes that the true parameter is
A1 = a and player 2 believes that the true parameter is A2 , a. Likewise, let xdouble

denote the steady-state action profile for double misspecification with A1 = a and
A2 , a. The following lemma relates these two steady states when player 2’s
misspecification is small.

Lemma 4. Consider a symmetric game with xcorrect
1 = xcorrect

2 . Suppose that in
the case of first-order misspecification with A = a, there is a unique steady state
and it is regular. Suppose also that in the case of double misspecification with
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A1 = A2 = a, there is a unique steady state and it is regular. Then in the case of
double misspecification with A1 = A2 = a, we have NE ′i ∈ (−1,1), and

∂xdouble
2

∂A2
=

(Uii−L)(Uii +Ui j−L)
Uii(Uii +Ui j−2L)

(
1−

Ui j−L
Uii−L

)
∂xfirst

2
∂A

,

∂xdouble
1

∂A2
=− L

Uii +Ui j−L
∂xdouble

2
∂A2

,

where Uii =
∂ 2U1(xcorrect,θ∗)

∂x2
1

, Ui j =
∂ 2U1(xcorrect,θ∗)

∂x1∂x2
, L= ∂ θ̂1

∂x1

Û1
∂ x̂1∂θ

=
Qx1
Qθ
· ∂

2U1(xcorrect,θ)
∂x1∂θ

.

We also have sgn∂xdouble
2

∂A2
= sgn∂xfirst

2
∂A and sgn∂xdouble

1
∂A2

= sgn∂xdouble
2

∂A2
L.

Proof. We first prove NE ′i ∈ (−1,1). Note that x1 = x2 = x̂1 = x̂2 = xcorrect
i con-

stitutes a steady state at A1 = A2 = a. Then we must have |NE ′1NE ′2| ≤ 1 at
xdouble = (xcorrect

1 ,xcorrect
2 ); the proof is very similar to that of BR′1BR′2 ≤ 1 in the

proof of Proposition 1, and hence omitted. (We only need to replace BR′i in the
proof if Proposition 1) with NE ′i .) Also, the regularity condition detM , 0 im-
plies |NE ′1NE ′2| , 1. Accordingly, we have |NE ′1NE ′2|= |NE ′i |< 1, which implies
NE ′i ∈ (−1,1).

Let Li =
Qx1
Qθ

∂ 2Ui
∂xi∂θ

. When A1 = A2 = a, the multiplier effect on ∂xdouble
2

∂A2
appear-

ing in the proof of Proposition 3, (1−BR14BR41)
M11M22M33M44

detM , can be rewritten
as

1−BR14BR41

(1−BR′14BR′41)(1−BR′23BR′32)− (BR′12 +BR′14BR′42)(BR′21 +BR′23BR′31)

=
1− U12−L1

U11

U21
U22−L2(

1− U12−L1
U11

U21
U22−L2

)(
1− U21−L2

U22

U12
U11−L1

)
−
(
− L1

U11
+ U12−L1

U11

L2
U22−L2

)(
− L2

U22
+ U21−L2

U22

L1
U11−L1

)
=

U22(U11−L1)(U11U22−U11L2−U21U12 +U21L1)

(U11U22−U11L2−U21U12 +U21L1)(U11U22−U22L1−U12U21 +U12L1)− (U12L1−U22L1)(U21L1−U11L2)
.
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When the game is symmetric, this reduces to

Uii(Uii−L)(Uii−Ui j)(Uii +Ui j−L)
(Uii−Ui j)2(Uii +Ui j−L)2−L2(Uii−Ui j)2

=
Uii(Uii−L)(Uii +Ui j−L)

(Uii−Ui j)(U2
ii +U2

i j +2UiiUi j−2UiiL−2Ui jL)

=
Uii(Uii−L)(Uii +Ui j−L)

(Uii−Ui j)(Uii +Ui j)(Uii +Ui j−2L)

=
U2

ii

U2
ii −U2

i j
·
(Uii−L)(Uii +Ui j−L)

Uii(Uii +Ui j−2L)

=
1

1−BR′1BR′2
·
(Uii−L)(Uii +Ui j−L)

Uii(Uii +Ui j−2L)
.

Similarly, when the game is symmetric, the base misspecification effect on ∂xdouble
2

∂A2

appearing in the proof of Proposition 3,
(

M2A
M22

+BR23
M3A
M33

)
, can be rewritten as(

1−
Ui j−L
Uii−L

)
M2A

M22
.

These results and Proposition 3 imply the first equation in the proposition. Also,
the second equation follows from

NE ′1 =
BR′12 +BR′14BR′42

1−BR′14BR′41
=
− L

Uii
+

Ui j−L
Uii

L
Uii−L

1− Ui j−L
Uii

Ui j
Uii−L

=
−L(Uii−L)+L(Ui j−L)

Uii(Uii−L)−Ui j(Ui j−L)

=
L(Uii−Ui j)

(Uii +Ui j−L)(Uii−Ui j)
=

L
Uii +Ui j−L

.

Next, we will show sgn∂xdouble
2

∂A2
= sgn∂xfirst

2
∂A . Recall that

∂xdouble
2

∂A2
=

(Uii−L)(Uii +Ui j−L)
Uii(Uii +Ui j−2L)

(
1−

Ui j−L
Uii−L

)
∂xfirst

2
∂A

.

Note that Uii = M11 < 0 and Uii− L = M33 < 0 under the regularity condition,
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Also Uii +Ui j−L < 0 because if not and Uii +Ui j−L > 0,

NE ′i ∈ (−1,1)⇔−1 <
L

Uii +Ui j−L
< 1

⇔−(Uii +Ui j−L)< L <Uii +Ui j−L
⇒Uii +Ui j > 0,

which contradicts with Uii < 0 and |BR′i|= |
Ui j
Uii
|< 1. Similarly, Uii+Ui j−2L < 0

because

NE ′i ∈ (−1,1)⇔−1 <
L

Uii +Ui j−L
< 1

⇔Uii +Ui j−L < L <−(Uii +Ui j−L)
⇒Uii +Ui j−2L < 0,

So the term (Uii−L)(Uii+Ui j−L)
Uii(Uii+Ui j−2L) appearing in the above display is positive. Similarly,

the term 1− Ui j−L
Uii−L is positive, because Uii < 0 and |BR′i|= |

Ui j
Uii
|< 1 imply

Uii−Ui j < 0⇔ (Uii−L)− (Ui j−L)< 0⇔ 1−
Ui j−L
Uii−L

> 0

where the last inequality uses Uii−L < 0. Hence we have sgn∂xdouble
2

∂A2
= sgn∂xfirst

2
∂A as

desired. Finally, sgn∂xdouble
1

∂A2
= sgn∂xdouble

2
∂A L directly follows from NE ′i =

L
Uii+Ui j−L

and Uii +Ui j−L < 0. Q.E.D.

Let Uii, Ui j, and L be as stated in Lemma 4. That is,

Uii =
∂ 2Ui

∂ 2xi
= 2Qx + xiQxx− c′′ < 0,

Ui j =
∂ 2Ui

∂xi∂x j
= Qx + xiQxx = Qx + xiQxx < 0,

L =
Qxi

Qθ

∂ 2Ui

∂xi∂θ
=

Qx

Qθ

(xiQxθ +Qθ )< 0.

Then, Lemma 4 and the argument similar to the proof of Corollary 2 imply the
result. Q.E.D.
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B.8 Proof of Lemma 1
For the case in which X is finite, this is exactly the same as Lemma 1 of Esponda,
Pouzo, and Yamamoto (2021). For the case in which X is continuous, we need a
minor modification of the proof. We first prove a preliminary lemma:

Lemma 5. Assume that X is continuous. Under Assumption 1(iii) and (iv),
∫

Y g(x,y)Q(dy|x)
is bounded and continuous in x.

Proof. Take a sequence xn converging to x. Then∫
Y

g(xn,y)Q(dy|xn)−
∫

Y
g(x,y)Q(dy|x)

≤
∣∣∣∣∫Y

g(xn,y)Q(dy|xn)−
∫

Y
g(xn,y)Q(dy|x)

∣∣∣∣
+

∣∣∣∣∫Y
g(xn,y)Q(dy|x)−

∫
Y

g(x,y)Q(dy|x)
∣∣∣∣ .

From Assumption 1(iii), Q(dy|xn) weakly converges to Q(dy|x), so the first term
of the right-hand side converges to zero. Also from Assumption 1(iv-a), g(xn,y)
pointwise converges to g(x,y), so the second term converges to zero. Q.E.D.

As shown in the display in EPY, we have

Ki,k(θ
n
i,k,σ

n)−Ki(θ
n
i,k,σ)≤

∫
X

∫
Y

g(x,y)Q(dy|x)σn
X̂1,1×X̂2,1

(dx)

−
∫

X

∫
Y

g(x,y)Q(dy|x)σX̂1,1×X̂2,1
(dx)

where σX̂1,1×X̂2,1
and σn

X̂1,1×X̂2,1
are the marginals of σ and σn on X̂1,1× X̂2,1, re-

spectively. From Lemma 5, the right-hand side converges to zero as σn→ σ . The
rest of the proof is exactly the same as in EPY. Q.E.D.

B.9 Proof of Proposition 5
For the special case in which X is finite, Theorem 1 of Esponda, Pouzo, and
Yamamoto (2021) proves the same result. We need a minor modification to their
proof, as they use finiteness of X in Step 2 in the proof of Lemma 2.

Pick i, k, θi,k. Then let

fl(x̂) = EQ(·|x̂1,1,x̂2,1)

 sup
θ ′i,k∈O(θi,k,

1
l )

∣∣∣∣∣ q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
−

q(y|x̂1,1, x̂2,1)

qθ ′i,k
(y|x̂i,k, x̂i,k+1)

∣∣∣∣∣
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where O(θi,k,
1
l ) is a 1

l -neighborhood of θi,k. Then as explained at the end of the
the first paragraph in EPY’s step 2, liml→∞ fl(x̂)→ 0 for each x̂. In what follows,
we will show that this convergence is uniform in x̂; then there is δ (θi,k,ε) with
which (16) of EPY holds, and the rest of the proof is exactly the same as EPY’s.

Pick an arbitrary ε > 0. For each x̂, let F(x̂) = {l ∈ [0,∞)| fl(x̂) ≥ ε}. Then
we have the following lemma:

Lemma 6. For each x̂, there is l(x̂) > 0 such that F(x̂) = [0, l(x̂)]. Also F(x̂) is
upper hemi-continuous in x̂.

Proof. The first part follows from the fact that fl(x̂) is continuous and decreasing
in l, and liml→∞ fl(x̂) = 0.

To prove the second part, pick x̂ and an arbitrary small η > 0. Then fl(x̂)+η(x̂)<
ε . Since fl(x̂) is continuous in x̂, there is an open neighborhood U of x̂ such
that fl(x̂)+η(x̂′) < ε for all x̂′ ∈ U . This implies that l(x̂′) < l(x̂) + η for all
x̂′ ∈U . Q.E.D.

The above lemma implies that l(x̂) is an upper hemi-continuous function, and
from the Maximum theorem, l(x̂) is bounded; l(x̂)< l∗ for some l∗. Hence fl(x̂)≤
ε for all x̂ and l ≥ l∗, implying uniform convergence. Q.E.D.

B.10 Proof of Proposition 7
This is very similar to the first step of the proof of Proposition 2 in EPY. However,
we need a minor modification, as X may not be finite in our setup. We first prove
upper hemi-continuity of Bε(σ).

Lemma 7. Bε(σ) is upper hemi-continuous in (ε,σ).

Proof. Since ∏
2
i=1 ∏

ki+1
k=1 4Θi,k is compact, it is sufficient to show that (εn,σn, µ̂n)→

(ε,σ , µ̂) and µ̂n ∈ Bεn(σn) for each n imply µ̂ ∈ Bε(σ). Note that

lim
n→∞

(∫
Θi,k

(Ki,k(θi,k,σ
n)µ̂n

i,k(dθi,k)−
∫

Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k)

)
= lim

n→∞

(∫
Θi,k

(Ki,k(θi,k,σ
n)µ̂n

i,k(dθi,k)−
∫

Θi,k

(Ki,k(θi,k,σ)µ̂n
i,k(dθi,k)

)
+ lim

n→∞

(∫
Θi,k

(Ki,k(θi,k,σ)µ̂n
i,k(dθi,k)−

∫
Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k)

)
.
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The first term of the right-hand side is zero, because Ki,k(·,σn) pointwise con-
verges to Ki,k(·,σ) (which follows from the fact that σn weakly converges to σ ).
Also the second term of the right-hand side is zero, as µn

i,k weakly converges to
µi,k.

lim
n→∞

∫
Θi,k

(Ki,k(θi,k,σ
n)µ̂n

i,k(dθi,k) =
∫

Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k).

Since µ̂n ∈ Bεn(σn),∫
Θi,k

(Ki,k(θi,k,σ
n)−K∗i,k(σ

n))µ̂n
i,k(dθi,k)≤ ε

n.

Taking n→ ∞ and using continuity of K∗i,k(σ) (which follows from the theory of
maximum), ∫

Θi,k

(Ki,k(θi,k,σ)−K∗i,k(σ))µ̂i,k(dθi,k)≤ ε.

Hence µ ∈ Bε(σ), which implies upper hemi-continuity of Bε(σ). Q.E.D.

Now we show that Sε(σ) is upper hemi-continuous at ε = 0. Since X is com-
pact, it suffices to show that (εn,σn,xn)→ (0,σ ,x) and xn ∈ Sεn(σn) for each n,
imply x ∈ Sε(σ). As noted earlier, we already know that S0(σ) is upper hemi-
continuous in σ . So without loss of generality, we assume εn > 0 for all n.

Since xn ∈ Sεn(σn), there is µ̂n ∈ Bεn(σn) with xn = ŝ(µ̂n). The sequence
(εn,σn,xn, µ̂n) is in a compact set, so there is a convergent subsequence, still
denoted by (εn,σn,xn, µ̂n). Let µ̂ = limn→∞ µ̂n. Then µ̂ ∈ B0(σ), as Bε(σ) is
upper hemi-continuous and µ̂n ∈ Bεn(σn) for each n. Also, we have x ∈ Ŝ(µ̂),
because Ŝ is upper hemi-continuous and xn ∈ Ŝ(µ̂n) for each n. Hence x ∈ S0(σ).

Q.E.D.

B.11 Proof of Proposition 8
The proof is very similar to that of Theorem 2 of EPY. In EPY, the proof consists
of three steps. In the first two steps, they show that w is a perturbed solution of the
differential inclusion. Then in the last step, they show that a perturbed solution is
an asymptotic pseudotrajectory (i.e., it satisfies (17)).

Our Propositions 6 and 7 imply that w is indeed a perturbed solution in the
sense of EPY. We can also show that a perturbed solution is indeed an asymptotic
pseudotrajectory. The proof is omitted because, other than replacing the Euclidean
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norm with the dual bounded-Lipschitz norm, it is exactly the same as the last step
of EPY.39 Q.E.D.

B.12 Proof of Lemma 2
We will show that θ(σ) is Lipschitz continuous in σ . Under Assumptions 4(i) and
(iii), the inverse (∇2Ki,k(θi,k(σ),σ))−1 of the Hessian matrix exists for each σ ,
and is continuous in σ . This means that ‖(∇2Ki,k(θi,k(σ),σ))−1‖ is bounded and
continuous in σ , where ‖C‖ = maxi j |ci j| denotes the max norm of a matrix C =
{ci j}, . Since4X̂ is compact, there is L1 such that ‖(∇2Ki,k(θi,k(σ),σ))−1‖< L1
for all i, k, and σ . Pick such L1.

Under Assumption 4(ii), there is L2 > 1 such that∣∣∣∣∂Ki,k(θi,k, x̂)
∂θi,k,m

−
∂K(θi,k, x̂′)

∂θi,k,m

∣∣∣∣< L2|x̂− x̂′|

for all i, k, m, θi,k, x̂, and x̂′. Also, under Assumption 4(i), there is L3 > 1 such
that ∣∣∣∣∂Ki,k(θi,k, x̂)

∂θi,k,m

∣∣∣∣< L3

for all i, k, m, θi,k, and x̂. Then for each σ and σ ′, we have∣∣∣∣∂Ki,k(θi,k,σ)

∂θi,k,m
−

∂Ki,k(θi,k,σ
′)

∂θi,k,m

∣∣∣∣
=

∣∣∣∣∫ ∂Ki,k(θi,k, x̂)
∂θi,k,m

σ(dx̂)−
∫

∂Ki,k(θi,k, x̂)
∂θi,k,m

σ
′(dx̂)

∣∣∣∣≤ 4L2L3‖σ −σ
′‖

where the inequality follows from the definition of the dual bounded-Lipschitz
norm and the fact that 1

4L2L3

∂Ki,k(θi,k,x̂)
∂θi,k,m

∈BL(X̂). This in turn implies that ∇Ki,k(θi,k,σ)

is equi-Lipschitz continuous, that is, there is L4 > 0 such that |∇Ki,k(θi,k,σ)−
∇Ki,k(θi,k,σ

′)|< L4‖σ −σ ′‖ for all i, k, θi,k, σ , and σ ′.

39This parallels Perkins and Leslie (2014), who show that the stochastic approximation tech-
nique of Benaı̈m (1999) for the Euclidean space extends to Banach spaces with the same proof.
Our result differs from Perkins and Leslie (2014) in that we consider a differential inclusion, rather
than a differential equation. But this does not cause any technical difficulty, because (i) 4X̂ is a
compact subset of a banach space with the dual bounded Lipschitz norm and (ii) Mazur’s lemma,
which is used to establish the result for differential inclusions in Euclidean spaces (Benaı̈m, Hof-
bauer, and Sorin (2005) and Esponda, Pouzo, and Yamamoto (2021)), is valid even in Banach
spaces.
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Let L = L1L4. We will show that θ(σ) is Lipschitz continuous with the con-
stant L. To do so, pick two action frequencies σ and σ ′ , σ arbitrarily. For
each β ∈ [0,1], let σβ = βσ +(1−β )σ ′ denote a convex combination of σ and
σ ′. From Assumption 4(iii), the KL minimizer θi,k(σβ ) must solve the first-order
condition

∇Ki,k(θi,k,σβ ) = 0,

which is equivalent to

β∇Ki,k(θi,k,σ)+(1−β )∇Ki,k(θi,k,σ
′) = 0.

Then by the implicit function theorem,

dθ(σβ )

dβ
=−(∇2Ki,k(θi,k(σβ ),σβ ))

−1 (
∇Ki,k(θi,k(σβ ),σ)−∇Ki,k(θi,k(σβ ),σ

′)
)
.

(30)

Using the fundamental theorem of calculus, we have

θ(σ)−θ(σ ′)

= θ(σ1)−θ(σ0)

=−
∫ 1

0
(∇2Ki,k(θi,k(σβ ),σβ ))

−1 (
∇Ki,k(θi,k(σβ ),σ)−∇Ki,k(θi,k(σβ ),σ

′)
)

dβ .

Then by the definition of L1 and L4,

|θ(σ)−θ(σ̃)| ≤
∫ 1

0
L1L4‖σ −σ

′‖dβ = L‖σ −σ
′‖. Q.E.D.

B.13 Proof of Proposition 11
We will first present a preliminary lemma. Pick an arbitrary action frequency
σ(0) ∈ 4X̂ and a solution σ ∈ Z(σ(0)) to the differential inclusion (17) starting
from this σ(0). Let θ(t) = θ(σ(t)) for each t. The following lemma shows that
{θ(t)}t≥0 solves (18).

Lemma 8. Pick t ≥ 0 such that (17) holds. Then θ̇(t) exists and satisfies (18).

Proof. Pick t as stated, and pick σ∗ ∈4S0(σ(t)) such that σ̇(t) = σ∗−σ(t). Let
σβ = βσ∗+(1−β )σ(t) for each β ∈ [0,1]. Then we have

θ(σ(t + ε))−θ(σ(t))
ε

=

(
θ(σε)−θ(σ0)

ε
+

θ(σ(t + ε))−θ(σε)

ε

)
.
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All we need to show is that the right-hand side has a limit as ε → 0, and the limit
is in the right-hand side of (18). Then θ(σ(t+ε))−θ(σ(t))

ε
also has a limit θ̇(t) and

this limit value satisfies (18).
Note first that limε→0

θ(σε )−θ(σ0)
ε

exists and is in the right-hand side of (18).
Indeed, from (30),

lim
ε→0

θ(σε)−θ(σ0)

ε
=

dθ(σβ )

dβ

∣∣∣∣
β=0

=−(∇2Ki,k(θi,k(σ0),σ0))
−1 (

∇Ki,k(θi,k(σ0),σ1)−∇Ki,k(θi,k(σ0),σ0)
)

=−(∇2Ki,k(θi,k(σ(t)),σ(t)))−1 (
∇Ki,k(θi,k(σ(t)),σ∗)

)
where the second equality follows from the fact that θi,k(σ0) solves the first-order
condition.

We conclude the proof by showing that limε→0
θ(σ(t+ε))−θ(σε )

ε
= 0. Since

θ(σ) is Lipschitz continuous, there is L > 0 such that∣∣∣∣θ(σ(t + ε))−θ(σε)

ε

∣∣∣∣≤ L
∥∥∥∥σ(t + ε))−σε

ε

∥∥∥∥
= L

∥∥∥∥(σ(t + ε))−σ(t))− (σε −σ0)

ε

∥∥∥∥ .
Taking ε → 0,

lim
ε→0

∣∣∣∣θ(σ(t + ε))−θ(σε)

ε

∣∣∣∣= L
∥∥∥∥ lim

ε→0

σ(t + ε)−σ(t)
ε

− lim
ε→0

σε −σ0

ε

∥∥∥∥
= L

∥∥∥∥∥dσ(t)
dt
−

dσβ

dβ

∣∣∣∣
β=0

∥∥∥∥∥= 0

Q.E.D.

Now we prove the proposition. Pick T > 0 and h ∈H arbitrary. Pick any
small ε > 0. Since θ(σ) is uniformly continuous in σ (this follows from the
continuity of θ and the compactness of 4X̂), there is η > 0 such that |θ(σ)−
θ(σ̃)| < ε for any σ and σ̃ with ‖σ − σ̃‖ < η . From Proposition 8, there is t∗

such that for any t > t∗, there is σ ∈ Z(w(h)[t]) such that

‖w(h)[t + τ]−σ(τ)‖< η
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for all τ ∈ [0,T ]. Pick such σ, and consider the corresponding θ, i.e., let θ(t) =
θ(σ(t)) for each t. Then by the definition of η , we have

‖wθ (h)[t + τ]−θ(τ)‖< ε

for all τ ∈ [0,T ]. Also this θ solves (18).40 This implies the result we want.
Q.E.D.

40Note that θ is absolutely continuous because σ is absolutely continuous and θ(σ) is Lipschitz
continuous. Also from Lemma 8, θ satisfies (18) for almost all t.
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C Other Types of Misspecification and Applications
This section presents the analysis which was not covered in the main text: other
applications, different types of higher-order misspecification, and an additional
convergence result. Section C.1 discusses tournaments. Section C.2 covers second-
order misspecification, where a player has an incorrect view about the opponent’s
view, but she correctly understands the physical environment. Section C.3 covers
one-sided double misspecification, where only one player has double misspecifi-
cation. Section C.4 presents a convergence result without identifiability.

C.1 Tournaments
As a third application, we discuss a standard tournament model based on Lazear
and Rosen (1981). Suppose that there are two players. In each period t, each
player i chooses an effort level xi and observes a stochastic output y∈{w, l}, where
y = w means “player 2 wins” and y = l means “player 1 wins.” The probability
of y = w (i.e., the probability of player 2 being a winner) is Q(x1,x2,a1,a2,θ),
where ai denotes player i’s capability and θ is an unknown economic state. We
assume that Qx1 < 0, Qx2 > 0, Qa1 < 0, Qa2 > 0, and Qθ > 0; i.e., player i has a
better chance of winning if she exerts more effort and/or has a better skill. These
assumptions are satisfied, for example, if

Q(x1,x2,a1,a2,θ) = θ
x2 +a2

x1 +a1 + x2 +a2
. (31)

This functional form is commonly used in the literature since Tullock (1980).
The parameter θ represents players’ uncertainty about fairness of the evalua-
tion system: it is a fair contest if θ = 1, but player 1 is favored if θ < 1, and
player 2 is favored if θ > 1.41 Players’ beliefs about this parameter θ changes
over time, depending on the observed output. A winner receives a payoff W =
1, and a loser receives a payoff L = 0. Each agent’s effort cost is c(xi), and
we assume that c′ > 0. Player 1’s payoff is u1(x1,y) = Prob(y = l)− c(x1) =
[1−Q(x1,x2,a1,a2,θ)]− c(x1), while player 2’s payoff is u2(x2,y) = Prob(y =
w)− c(x2) = Q(x1,x2,a1,a2,θ)− c(x2).

Suppose that player 2 has first-order misspecification in that she incorrectly
believes that her capability is A , a2. When A > a2, it represents player 2’s over-

41Another example is Q(x1,x2,a1,a2,θ) = θ + x2+a2
x1+a1+x2+a2

. In this example, it is a fair contest
if θ = 0, but player 1 is favored if θ < 0, and player 2 is favored if θ > 0. All of the following
discussions hold except that Qxiθ = 0 in this example.
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confidence about her own capability or prejudice about the opponent’s capability.
When A < a2, it represents player 2’s underconfidence about her own capability.

This setup is slightly different from the one we have studied so far; we con-
sider the binary signal space Y = {w, l} instead of the continuous signal space.
However, this does not change the steady-state conditions at all, i.e., the con-
ditions (3)-(2) must be satisfied in a steady state in the tournament model with
binary signals. Accordingly, Proposition 1 applies to the tournament model, and
the impact of misspecification is represented by the base misspecification effect
times the multiplier.

Simple algebra shows that the base misspecification effect in this tournament
model is written as

− 1
M22

Qx2A(x∗1,x
∗
2,a1,A,θ2)︸                       ︷︷                       ︸

direct effect

− ∂θ2

∂A
Qx2θ (x∗1,x

∗
2,a1,A,θ2)︸                             ︷︷                             ︸

indirect learning effect

 . (32)

This is exactly the same as the base misspecification effect (14) in the team pro-
duction, so the results in Section 4.2 continue to hold. For example, in Tullock-
type tournament (31), we have Qx2A =−2θ

x1+a1
(x1+a1+x2+A)3 < 0 and Qx2θ = x1+a1

(x1+a1+x2+A)2 >

0, so assuming M22 < 0, both the direct effect and the indirect effect in the base
misspecification effect are negative. This means that the overconfident player does
not work hard in the one-shot game, and in the long run, her effort level is even
lower than that. Intuitively, the overconfident player incorrectly believes that the
marginal return of effort is low (Qx2A < 0) and does not work hard in the one-shot
game. On top of that, since she wins less frequently than what she thinks, after
a long time, she becomes pessimistic about θ and incorrectly believes that the
contest is unfair. This learning effect further reduces her effort.

However, this base misspecification effect is reduced by the multiplier effect.
Indeed, in this tournament model, the multiplier is

1
1−BR′1BR′2

=
1

1− M12
M11

M21
M22

=
1

1+
Q2

x1x2
M11M22

≤ 1.

Here the inequality follows from the fact that M11 < 0 and M22 < 0 with small mis-
specification. Note that this inequality is strict whenever Qx1x2 , 0.42 Intuitively,

42For example, in the Tullock-type tournament, we have Qx1x2 = 0 only when x1 = x2 = 0, so
the multiplier is less than one for all parameter A with which xfirst

1 , xfirst
2 .
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when the overconfident player 2 reduces the effort due to the base misspecification
effect, the opponent best-responds to it; she increases the effort if Qx1x2 < 0, and
decreases the effort if Qx1x2 > 0. This in turn influences player 2’s optimal action,
and in both cases, she increases the effort; this mitigates the base misspecification
effect.

This result is quite different from that in the team production, where the mul-
tiplier is greater than one and amplifies the base misspecification effect. A crucial
difference is that players in the tournament have conflicting interests about the
output y; player 2 prefers y = w while player 1 prefers y = l. Accordingly we have
sgn(BR′1), sgn(BR′2), which implies that the multiplier is less than one and strate-
gic interaction weakens the impact of misspecification. By contrast, in the team
production, players have a common preference on y, and accordingly we have
sgn(BR′1) = sgn(BR′2). In this case, the multiplier is larger than one, and strate-
gic interaction strengthens the impact of misspecification. The same argument
applies to a more general setup; in a common interest game, we should expect a
larger deviation of long-run actions from a correctly specified model than that in
the single-agent model.

C.2 Second-Order Misspecification
In this subsection, we consider a long-run impact of a player’s bias about the
opponent’s view about the world. We assume that player 2 has second-order mis-
specification, in that she correctly understands the physical environment, but has
an incorrect view about the opponent’s view about a.43 Formally, we consider the
following information structure:

• Both players believe that for each parameter θ , the signal y is given by
y = Q(x1,x2,a,θ)+ ε .

• Player 2 (incorrectly) believes that it is common knowledge that “for each
parameter θ , player 1 believes that the signal y is given by y=Q(x1,x2,A,θ)+
ε and player 2 believes that the signal y is given by y = Q(x1,x2,a,θ)+ ε ,”
where A , a.

• Player 1 knows player 2’s information structure above.

43As evidence from laboratory experiments, subjects often systematically mispredict other sub-
jects’ preferences and actions (Van Boven, Dunning, and Loewenstein, 2000, for example). Lud-
wig and Nafziger (2011) report that most subjects in their experiments are not aware of or under-
estimate overconfidence of other subjects.
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Intuitively, this is the case in which player 2 has prejudice, in the sense that she in-
correctly believes that she has better information than the opponent does. Player 1
is unbiased, because she knows both the physical environment and the opponent’s
information.

In this setup, player 2 faces inferential naivety. She believes that the opponent
takes an action based on a misspecified model, so she makes an incorrect predic-
tion about the opponent’s play. It turns out that this inferential naivety influences
player 2’s action in two ways. First, player 2 best-responds to this incorrectly
predicted action of the opponent. Second, player 2 interprets an observed signal
conditional on the incorrectly predicted action, which leads to misguided learning.

Assume that players are myopic so that they maximize the expected stage-
game payoffs each period. To characterize equilibrium actions when player 2
has second-order misspecification, it is useful to introduce hypothetical player 1
who incorrectly believes that the true parameter is A , a. Player 2 believes that
the opponent is this hypothetical player 1, so each period, she chooses a Nash
equilibrium action against this hypothetical player. The true player 1 correctly
understands player 2’s reasoning, and best responds to player 2’s action.

Formally, let (µ̂1, x̂t) denote the action and the belief of the hypothetical player,
and let x = (x1,x2, x̂1) denote an action profile in the three-player game. The
hypothetical player 1’s expected stage-game payoff given θ is

Û1(x,θ ,A) = E[u1(x̂1,Q(x̂1,x2,A,θ)+ ε)],

because she thinks that the parameter is A , a. Player 2’s expected stage-game
payoff is

U2(x,θ) = E[u2(x2,Q(x̂1,x2,a,θ)+ ε)],

because she thinks that the opponent is the hypothetical player who chooses x̂1.
Player 1’s subjective expected stage-game payoff is

U1(x,θ) = E[u1(x1,Q(x1,x2,a,θ)+ ε)].

Using these notations, the equilibrium strategy in the infinite-horizon game is
described as follows. In period one, all players have the same belief µ1

1 = µ1
2 =

µ̂1
1 = µ . So they play a Nash equilibrium (x1

1,x
1
2, x̂

1
1), which solves the first-order

conditions ∂E[U1(x,θ)|µ]
∂x1

= 0, ∂E[U2(x,θ)|µ]
∂x2

= 0, and ∂E[Û1(x,θ)|µ]
∂ x̂1

= 0. At the end of
period one, players observe a public signal y1 = Q(x1

1,x
1
2,a,θ

∗)+ ε , and updates
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the posterior beliefs using Bayes’ rule. So each player’s belief in period two is

µ
2
1 (θ) =

µ1
1 (θ) f (y−Q(x1

1,x
1
2,a,θ))∫

Θ
µ1

1 (θ̃) f (y−Q(x1
1,x

1
2,a, θ̃))dθ̃

,

µ
2
2 (θ) =

µ1
2 (θ) f (y−Q(x̂1

1,x
1
2,a,θ))∫

Θ
µ1

2 (θ̃) f (y−Q(x̂1
1,x

1
2,a, θ̃))dθ̃

,

µ̂
2
1 (θ) =

µ̂1
1 (θ) f (y−Q(x̂1

1,x
1
2,A,θ))∫

Θ
µ̂1

1 (θ̃) f (y−Q(x̂1
1,x

1
2,A, θ̃))dθ̃

.

As is clear from this formula, while player 2 correctly knows the parameter a,
her posterior µ2

2 differs from player 1’s posterior µ2
1 because she uses Bayes’ rule

based on the wrong prediction x̂1
1 , x1

1 about player 1’s action. Since actions are
not observable, on the equilibrium path, the beliefs (µ2

2 , µ̂
2
2 ) are common knowl-

edge between player 2 and the hypothetical player 1. Also player 1 knows the be-
lief profile µ2 = (µ2

1 ,µ
2
2 , µ̂

2
1 ). So in period two, players play a Nash equilibrium

given this belief profile µ2 = (µ2
1 ,µ

2
2 , µ̂

2
1 ). Likewise, in any subsequent period

t ≥ 3, players play a Nash equilibrium given the belief profile µ t = (µ t
1,µ

t
2, µ̂

t
1),

where µ t is computed by Bayes’ rule.
As in Section 3.3, under a mild sufficient condition, players’ beliefs and ac-

tions almost surely converge to a steady state (x∗1,x
∗
2, x̂
∗
1,µ
∗
1 ,µ

∗
2 , µ̂

∗
1 ) which satisfies

the following conditions:

x∗1 ∈ argmax
x1

U1(x1,x∗2, x̂
∗
1,θ
∗), (33)

x∗2 ∈ argmax
x2

U2(x2,x∗1, x̂
∗
1,θ2), (34)

x̂∗1 ∈ argmax
x̂1

Û1(x̂1,x∗1,x
∗
2, θ̂1), (35)

µ
∗
1 = 1θ∗, (36)

µ
∗
2 = 1θ2 s.t. Q(x̂∗1,x

∗
2,a,θ2) = Q(x∗1,x

∗
2,a,θ

∗), (37)

µ̂
∗
1 = 1

θ̂1
s.t. Q(x̂∗1,x

∗
2,A, θ̂1) = Q(x∗1,x

∗
2,a,θ

∗). (38)

The first three conditions (33), (34), and (35) are the incentive compatibility condi-
tions, which require that each player maximize her own payoff given some beliefs.
The next three conditions (36), (37), and (38) require that these beliefs satisfy con-
sistency, in that each (actual and hypothetical) player’s belief is concentrated on
a state with which each player’s subjective signal distribution coincides with the
objective distribution.
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As in the case with first-order misspecification, we assume that for each action
profile x, there is a unique state which solves the consistency condition (37), and
we denote it by θ2(x,A). This θ2(x,A) can be interpreted as player 2’s long-run
belief when players choose the same action x each period. Similarly, we assume
that for each x, there is a unique state which solves (38), and we denote it by
θ̂1(x,A). Player 1’s long-run belief is defined as θ1(x,A) = θ ∗ for all x.

We will characterize how player 2’s misspecification influences the steady-
state actions, and to do so, the following notation is useful. For each i, j = 1,2,3
(possibly i = j), let

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,A)

+
∂θi(x,A)

∂x j
· ∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

.

denote the impact of player j’s action on player i’s marginal utility in the long
run. (Here player 3 refers to the hypothetical player, and x3, U3, and θ3 are x̂1, Û1,
and θ̂1, respectively.) The first term is the direct effect, and the second term is the
indirect effect through the steady-state belief θi. Then define the slope of player
i’s asymptotic best response curve with respect to player j’s action as

BR′i j =−
Mi j

Mii
.

Intuitively, BR′i j measures how player j’s action influences player i’s optimal
long-run action, while the action of l , i, j being fixed. The slope of player 1’s
asymptotic best response curve, BR′12 and BR′13, coincides with that of the standard
best response curve. This is so because she can learn the true state regardless of
the opponents’ play, and the indirect effects in M11, M12, and M13 are zero. In
particular, BR′13 = 0, because player 3 is not player 1’s opponent and the direct
effect in M13 is zero. On the other hand, the slopes of the other players’ asymptotic
best response curves are different from those of the standard best response, due
to the indirect effect. For example, BR′21 and BR′31 need not be zero, even though
players 2 and 3 do not think that player 1 is the opponent. Importantly, the indirect
effects in M21, M23, M31, and M33 do not disappear even in the limit as A→ a.
This is so because there is inferential naivety, and θ2(x,a) and θ̂1(x,a) can be
different from θ ∗ if x1 , x̂1. This is in a sharp contrast with the case with first-order
misspecification, where all the indirect effects disappear in the limit as A→ a.

Let

M3A :=
∂ 2Û1(x,θ ,A)

∂ x̂1∂A

∣∣∣∣
θ=θ̂1(x,A)

+
∂ 2Û1(x,θ ,A)

∂ x̂1∂θ

∣∣∣∣
θ=θ̂1(x,A)

∂ θ̂1(x,A)
∂A
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denote the impact of the hypothetical player’s bias A on her own marginal utility.
Now we are ready to state the result:

Definition 4. A steady state x∗ is regular if the following conditions are satis-
fied in x∗: (i) the steady-state action x∗i is uniquely optimal, (ii) x∗, θ2(x∗,A),
and θ̂1(x∗,A) are interior points, (iii) BR′23BR′32 , 1 and BR′12BR′21 +BR′23BR′32 +
BR′12BR′23BR′31 , 1, and (iv) Mii < 0 for each i.44

Proposition 12 (Steady State under Second-Order Misspecification). Let x∗ be a
regular steady state for some parameter A∗.45 Then there is an open neighborhood
of A∗ such that for any value A in this neighborhood, there is a regular steady state
x∗ which is continuous with respect to A, and we have

∂x∗2
∂A

=−M3A

M33

(
BR′23

1−BR′23BR′32

)(
1

1−BR′12NE ′2

)
∂x∗1
∂A

=
∂x∗2
∂A
·BR′12

where

NE ′2 =
BR′21 +BR′23BR′31

1−BR′23BR′32
. (39)

The first equation in this proposition describes how player 2’s second-order
misspecification influences her own steady-state action x2, and the second equa-
tion states that the rational player 1 simply best-responds to player 2’s play. To
interpret the first equation, recall that the parameter A represents the first-order
belief (about the physical environment) of the hypothetical player. So when this
parameter A changes, it influences the hypothetical player’s optimal action x̂1 di-
rectly and indirectly through the steady-state belief. The first term −M3A

M33
in the

44As in the case with first-order misspecification, the regularity conditions (i) and (ii) ensure
that the steady state is continuous with respect to the parameter A and the first-order condition for
the incentive compatibility is satisfied there. The condition (iii) is needed for the multiplier effect
to be well-defined. The condition (iv) ensures that the base misspecification effect and the slope
of the asymptotic best response curve are well-defined. This condition is also useful when we
interpret the base misspecification effect.

45Under the following additional assumption, we can also show BR′23(BR′32+BR′12BR′31)

1−BR′12BR′21
< 1. Specif-

ically, given x̂1, let NE(x̂1) denote the set of (x1,x2) satisfying (37), (33), and (34) for some θ2.
Also, given (x1,x2), let BR3(x1,x2) denote the set of x̂1 satisfying (38) and (35) for some , θ̂1. If
NE and BR3 are continuous functions (rather than correspondences) and if a steady state is unique,
then BR′23(BR′32+BR′12BR′31)

1−BR′12BR′21
< 1. A proof is available upon request.
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equation measures this impact, holding the other players’ actions fixed. Note that
this term is very similar to the base misspecification effect appearing in Proposi-
tion 1.

The second term in the equation, BR′23
1−BR′23BR′32

, measures how the hypothetical
player’s action x̂1 influences player 2’s action, holding player 1’s action being
fixed. When the hypothetical player’s action x̂1 changes by −M3A

M33
, player 2 best-

responds to it, and her steady-state belief is affected. Accordingly, player 2’s
optimal long-run action changes by −M3A

M33
BR′23. Also, holding player 1’s action

fixed, this effect is amplified by the strategic interaction between player 2 and
the hypothetical player; a change in player 2’s action influences the hypothetical
player’s action and belief, which in turn influences player 2’s action and belief,
and so on. As in the case with first-order misspecification, this effect is repre-
sented by the multiplier 1

1−BR′23BR′23
. So in total, when player 1’s action is fixed,

player 2’s second-order misspecification influences her own steady-state action by
−M3A

M33

(
BR′23

1−BR′23BR′32

)
.

The last term in the equation, 1
1−BR′12NE ′2

, measures how player 1’s strategic
play amplifies/reduces the impact of misspecification. To see what it means, it is
useful to define player 2’s asymptotic Nash equilibrium correspondence as

NE2(x1) = {x2|∃x̂1 satisfying (34), (35), (37), (38)}

for each x1. Intuitively, NE2(x1) denotes player 2’s steady-state action, when
player 1 chooses the same action x1 every period while the other players learn
the state and adjust actions. Then the term NE ′2 appearing in the proposition can
be interpreted as the slope of this Nash equilibrium correspondence NE2, i.e.,
it measures how a marginal change in player 1’s (constant) action x1 influences
player 2’s steady-state action.46

With this interpretation in mind, suppose that player 2’s action changes by
∆. This influences player 1’s optimal action by BR′12∆, which in turn influences

46To see that NE ′2 =
BR′21+BR′23BR′31

1−BR′23BR′32
is the slope of NE2, suppose that the steady-state action

(x2, x̂1) is an interior solution for every x1. Then the following first-order conditions must be
satisfied in any steady state:

∂U2

∂x2

∣∣∣∣
θ2=θ2(x,A)

= 0,
∂Û1

∂ x̂1

∣∣∣∣
θ̂1=θ̂1(x,A)

= 0.

Applying the implicit function theorem to this system of equations (here we regard (x2, x̂1) as a

function depending on the parameter x1), we indeed have ∂x2
∂x1

=
BR′21+BR′23BR′31

1−BR′23BR′32
.
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player 2’s (and the hypothetical player’s) steady-state beliefs and actions. This
feedback effect on player 2’s action is BR′12NE ′2∆. This process continues in-
finitely, which results in the multiplier effect 1

1−BR′12NE ′2
.47

While NE ′2 is somewhat similar to BR′2 appearing in the case of first-order
misspecification, there are two important differences. First, in NE ′2, we consider
the case in which both player 2 and the hypothetical player adjust actions (and
play a Nash equilibrium) every period. In BR′2 (and in BR′21), we consider the
case in which only player 2 adjusts actions. Second, since player 2 does not
think that player 1 is the opponent in the case of second-order misspecification,
NE ′2 =

BR′21+BR′23BR′31
1−BR′23BR′32

involves only the indirect effect; the first term BR′21 in the
numerator represents how player 1’s action influences player 2’s action through
the steady-state belief, and the second term BR′23BR′31 represents how player 1’s
action influences player 2’s action through the hypothetical player’s action. These
effects are amplified by the strategic interaction between player 2 and the hypo-
thetical player, and hence we have 1−BR′23BR′32 in the denominator.

Proof of Proposition 12

Pick A∗ and x∗ as stated. Since x∗ is an interior point, it must satisfy the first-order
conditions

∂U1(x1,x∗2,θ
∗)

∂x1
= 0, (40)

∂U2(x̂∗1,x2,θ2)

∂x2
= 0, (41)

∂Û1(x1,x∗2, θ̂1)

∂x1
= 0. (42)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text.

By the regularity condition (iii), detM , 0, so the implicit function theorem
guarantees that for any parameter A close to A∗, there is an action profile x∗ which
satisfies the first-order conditions (40)-(42). These action profiles are globally
optimal, because of the regularity conditions (i) and (ii). So this x∗ is a steady

47In this argument, we implicitly use the fact that player 1’s optimal action is not affected by
the hypothetical player’s action.
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state given the parameter A. The implicit function theorem also asserts that M11 M12 M13

M21 M22 M23

M31 M32 M33




∂x∗1
∂A
∂x∗2
∂A
∂ x̂1
∂A

=−

 0
0

M3A

 ,
Solving this system of equations,

∂ x̂∗1
∂A

=−(M11M22−M12M21)M3A

detM
,

∂x∗2
∂A

=
M11M23M3A

detM
,

∂x∗1
∂A

=−M12M23M3A

detM
.

Dividing both the numerator and the denominator of the second equation by M11M22M33
and using detM = M11M22M33 + M12M23M31 −M12M21M33 −M11M32M23, we
have

∂x∗2
∂A

=−
BR′23

1−BR′12BR′23BR′31−BR′12BR′21−BR′23BR′32
·M3A

M33

=−M3A

M33

(
BR′23

1−BR′23BR′32

)(
1−BR′23BR′32

1−BR′12BR′23BR′31−BR′12BR′21−BR′23BR′32

)
=−M3A

M33

(
BR′23

1−BR′23BR′32

)(
1

1−BR′12NE ′2

)
.

The second equation in the proposition follows from the second and the third
equations. Q.E.D.

C.3 One-Sided Double Misspecification
We consider the case in which only player 2 is misspecified. Specifically, we
assume that:

• Player 2 (incorrectly) believes that for each parameter θ , the signal y is
given by y = Q(x1,x2,A,θ)+ ε , where A , a.

• Player 2 (incorrectly) believes that it is common knowledge that “the signal
y is given by y = Q(x1,x2,A,θ)+ ε .”
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• Player 1 knows player 2’s information structure above.

With this information structure, player 2 has an incorrect view about the parameter
a, and in addition, she has inferential naivety in that she incorrectly believes that
player 1 takes an action based on a misspecified model. Player 1 is unbiased,
in the sense that she correctly understands the true parameter a and she knows
player 2’s information structure (which allows her to make a correct prediction
about player 2’s action).

Assume again that the agents are myopic, so that they maximize the expected
stage-game payoff each period. As in the case of second-order misspecification,
we consider a hypothetical player 1 who thinks that it is common knowledge that
the true parameter is A, a. Let x=(x1,x2, x̂1) denote an action profile in the three-
player game, and let Û1(x,θ ,A) denote the hypothetical player’s stage-game pay-
off, U2(x,θ ,A) denote player 2’s stage-game payoff, and U1(x,θ) denote player
1’s stage-game payoff. Note that player 2 and the hypothetical player evaluates
the expected payoff assuming that the signal is given by y = Q(x̂1,x2,A,θ)+ ε .
The equilibrium strategy in the infinite-horizon game is very similar to that in the
case of the second-order misspecification; we only need to replace the parameter
a which appears in player 2’s expected payoff and Bayes’ formula with the biased
parameter A.

In this environment, the following conditions must be satisfied in a steady
state:

x∗1 ∈ argmax
x1

U1(x1,x∗2,a,θ
∗), (43)

x∗2 ∈ argmax
x2

U2(x̂∗1,x2,A,θ2), (44)

x̂∗1 ∈ argmax
x̂1

Û1(x̂1,x∗2,A,θ2), (45)

µ
∗
1 = 1θ∗, (46)

µ
∗
2 = µ̂

∗
1 = 1θ2 s.t. Q(x̂∗1,x

∗
2,A,θ2) = Q(x∗1,x

∗
2,a,θ

∗). (47)

The first three conditions (43), (44), and (45) are incentive compatibility condi-
tions, which require that each player maximizes her payoff given some beliefs.
The next two conditions (46) and (47) assert that these beliefs satisfy consistency,
in that each player’s belief is concentrated on a state under which each player’s
subjective signal distribution coincides with the objective distribution. Note that
the hypothetical player’s belief is exactly the same as player 2’s belief, as they
both believe that it is common knowledge that the true parameter is A. We assume
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that for each action profile x and parameter A, there is a unique state θ2(x,A)
which solves (47). Intuitively, this θ2(x,A) is player 2’s long-run belief when
players choose the same action profile x every period. Player 1’s long-run belief
is θ1(x,A) = θ ∗.

Define the slope of player i’s asymptotic best response curve with respect to
player j’s action as

BR′i j :=−
Mi j

Mii

where for each i, j = 1,2,3 (possibly i = j),

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,A)

+
∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂x j

.

measures the impact of player j’s action on player i’s marginal utility in the long
run. Here again, player 3 refers to the hypothetical player, and her action, belief,
and utility are denoted by x3, θ3, and U3 rather than x̂1, θ̂1, and Û1.

For each i = 2,3, let

MiA :=
∂ 2Ui(x,θ ,A)

∂xi∂A

∣∣∣∣
θ=θi(x,A)

+
∂ 2Ui(x,θ ,A)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂A

denote the impact of player i’s first-order misspecification on her marginal utility.
The following proposition characterizes how player 2’s double misspecification
influences the steady-state actions.

Definition 5. A steady state x∗ is regular if the following conditions are satisfied
in x∗: (i) the steady-state action x∗i is uniquely optimal, (ii) x∗ and θ2(x∗,A) =
θ̂1(x∗,A) are interior points, (iii) BR′23BR′32 , 1 and BR′12BR′21 + BR′23BR′32 +
BR′12BR′23BR′31 , 1, and (iv) Mii < 0 for each i.

Proposition 13 (Steady State under One-Sided Double Misspecification). Let x∗

be a regular steady state for some parameter A∗. Then there is an open neigh-
borhood of A∗ such that for any value A in this neighborhood, there is a regular
steady state x∗ which is continuous with respect to A, and we have

∂x∗2
∂A

=−
(

M2A

M22
+

M3A

M33
BR′23

)(
1

1−BR′23BR′32

)(
1

1−BR′12NE ′2

)
,

∂x∗1
∂A

=
∂x∗2
∂A
·BR′12

where NE ′2 is defined by (39).
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The first equation in this proposition characterizes how player 2’s double mis-
specification influences her own steady-state action. This is very similar to the
first equation in Proposition 12. The only difference is that here player 2 has first-
order misspecification about the parameter a, which influences her optimal action
by the base misspecification effect −M2A

M22
. All other terms are the same as those

in Proposition 12. The second equation in the proposition simply states that the
rational player 1 best-responds to player 2’s action.

Proof of Proposition 13

Pick A∗ and x∗ as stated. Since x∗ is an interior point, it must satisfy the first-order
conditions

∂U1(x1,x∗2,θ
∗)

∂x1
= 0, (48)

∂U2(x̂∗1,x2,θ2)

∂x2
= 0, (49)

∂Û1(x1,x∗2,θ2)

∂x1
= 0. (50)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text.

By the regularity condition (iii), detM , 0, so the implicit function theorem
guarantees that for any parameter A close to A∗, there is an action profile x∗ which
satisfies the first-order conditions (48)-(50). These action profiles are globally
optimal, because of the regularity conditions (i) and (ii). So this x∗ is a steady
state given the parameter A. The implicit function theorem also asserts that M11 M12 M13

M21 M22 M23

M31 M32 M33




∂x∗1
∂A
∂x∗2
∂A
∂ x̂1
∂A

=−

 0
M2A

M3A

 ,
Solving this system of equations,

∂ x̂∗1
∂A

=−(M11M22−M12M21)M3A− (M11M32−M12M31)M2A

detM
,

∂x∗2
∂A

=−M11(M33M2A−M23M3A)

detM
,

∂x∗1
∂A

=
M12(M33M2A−M23M3A)

detM
.
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The rest of the proof is very similar to that of Proposition 12, and hence omitted.
Q.E.D.

C.4 Convergence Without Identifiability
There are some economic examples which do not satisfy the identifiability pre-
sented in the main text. For example, the model of overconfidence studied in
Heidhues, Kőszegi, and Strack (2018) does not satisfy the identifiability in gen-
eral.

The following proposition shows that even in such a situation, the belief still
converges to a steady state if some additional assumptions on payoffs and infor-
mation structures are satisfied. For each action frequency σ , let θ i,k(σ) denote
the minimal KL minimizer, that is, let θ i,k(σ) = minθi,k∈Θi,k(σ)θi,k. Likewise,
let θ i,k(σ) denote the maximal KL minimizer. Also, when the problem is one-
dimensional (i.e., I∗∗ \ I∗ = {(i,k)}), for each model θi,k, let S0(θi,k) = S0(µ)
where µ is a degenerate belief on θ such that θ j,l = θi,k for all ( j, l) ∈ I(i,k) and
θ j,l = θ ∗ for all ( j, l) ∈ I∗.

Proposition 14. Pick any Markov strategy ŝ. Assume that

(i) The problem is one-dimensional, i.e., I∗∗ \ I∗ = {(i,k)} and Θi,k ⊂ R.

(ii) For each pure action profile x, the KL divergence Ki,k(θ ,1x) is single-peaked,

i.e., there is a unique KL minimizer θi,k(x),
∂Ki,k(θ ,1x)

∂θi,k
< 0 for θi,k < θi,k(x),

and ∂Ki,k(θ ,1x)
∂θi,k

> 0 for θi,k > θi,k(x).

(iii) There is a unique steady state σ∗, and θi,k(σ
∗) = {θ ∗i,k}.

(iv) S0(θ̃i,k) is a function (rather than a correspondence) of θ̃i,k, and θi,k(S0(θ̃i,k))
is increasing in θ̃i,k.

(v) For each belief µ̂ whose support is compact, S0(µ)⊆
⋃

θi,k∈co(suppµ̂i,k)
S0(θi,k).

Then for each sample path h ∈H , limt→∞ θ i,k(σ
t(h)) = limt→∞ θ i,k(σ

t(h)) =
θ ∗i,k.
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Proof of Proposition 14

The result immediately follows from the following lemma:

Lemma 9. Suppose that all the assumptions stated in Proposition 14 are satisfied.
Then for any sample path h ∈H ,

(i) liminft→∞ θ i,k(σ
t(h))≥ θ ∗i,k.

(ii) limsupt→∞ θ i,k(σ
t(h))≤ θ ∗i,k.

In what follows, we will prove this lemma. We will focus on part (i), because
the proof of part (ii) is symmetric.

We begin with stating two preliminary lemmas. The first lemma considers the
case in which the current action frequency has a unique KL minimizer θ t

i,k, and
shows that if the current KL minimizer θ t

i,k is lower than the steady state belief
θ ∗i,k, then today’s action S0(θ

t
i,k) induces a higher KL minimizer. This implies

that the KL minimizer tomorrow will be closer to the steady state belief than the
current one. Likewise, if the current KL minimizer is higher than the steady state
belief, then today’s action induces a lower KL minimizer.

Lemma 10. θi,k(S0(θ̃i,k))> θ̃i,k for all θ̃i,k < θ ∗i,k, and θi,k(S0(θ̃i,k))< θ̃i,k for all
θ̃i,k > θ ∗i,k.

Proof. Note that θi,k(S0(·)) is a continuous mapping from Θi,k ⊆ R to itself, and
its fixed point is a steady state. Since there is a unique steady state, the result
follows from a standard argument. Q.E.D.

The next lemma considers the case in which the current action frequency need
not have a unique minimizer, and shows that the result similar to the previous
lemma holds; very roughly, if the smallest KL minimizer θ(θ t

i,k) is lower than the
steady state belief, then it will move up and approaches the steady state belief.
The proof is omitted, as it is very similar to Lemma 4 of Esponda, Pouzo, and
Yamamoto (2021).

Lemma 11. Pick any θi,k < θ ∗i,k and any σ such that σ j,l =σ j̃,l̃ for each ( j, l)∈ I∗∗

and ( j̃, l̃)∈ I( j, l) and such that Ki,k(θi,k,σ)< Ki,k(θ̃i,k,σ) for all θ̃i,k < θi,k. Then
for any solution σ ∈ Z(σ) starting from this σ , we have θ i,k(σ(t)) > θ for all
t > 0.
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Now we will prove Lemma 9. Suppose not, so that there is a sample path h ∈
H such that liminft→∞ θ i,k(σ

t(h))< θ ∗i,k. Pick such h, and let θ 0
i,k = liminft→∞ θ i,k(σ

t(h)).
Let w : [0,∞)→4X denote the continuous-time interpolation of the action fre-
quency (σ t(h))∞

t=1.
Pick ε > 0 such that

∂Ki,k(θi,k,σ)

∂θi,k
< 0 ∀θi,k ≤ θ

0
i,k + ε (51)

for all σ such that

σ

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1−2ε.

To see why such ε exists, note first that from Lemma 10 and Assumption (iv) of
Proposition 14, θi,k(S0(θ̃i,k))> θ 0

i,k for all θ̃i,k ≥ θ 0
i,k. Since θi,k(S0(·)) is continu-

ous, for any small ε , we have θi,k(S0(θ̃i,k))> θ 0
i,k +2ε for all θ̃i,k ≥ θ 0

i,k−ε . Then
from Assumptions (iv) and (v) of Proposition 14, we have θi,k(x) > θ 0

i,k + 2ε for
all σ such that θ i,k(σ) ≥ θ 0

i,k− ε and for all x ∈ S0(σ). Then from the single-
peakedness assumption, (51) holds for all σ such that

σ

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

= 1.

This inequality does not change even if σ is perturbed, so ε satisfies the desired
property. (Take ε small, if necessary.)

Pick T > 0 such that 1
1+T < ε . Then pick t∗ > 0 such that for all t > t∗,

sup
s∈[0,2T ]

inf
σ∈Z(w(t))

|σ(s)−w(t + s)|< ε. (52)

Pick t > t∗ such that θ i,k(w(t)) is in the ε-neighborhood of θ 0
i,k. Pick any

solution σ ∈ Z(w(t)) to the differential inclusion starting from this w(t). Then
from Lemma 11 (we set θi,k = θ i,k(w(t))), we have θ i,k(σ(s)) > θ i,k(w(t)) >
θ 0

i,k− ε for all s > 0. So in this solution σ, the share of the set of action profiles
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⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε
S0(σ̃) increases over time. In particular, by the definition of T ,

we have

σ(s)

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1− ε ∀s≥ T.

Then from (52), we have

w(t + s)

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1−2ε ∀s ∈ [T,2T ].

This and (51) imply

∂Ki,k(θi,k,w(t + s))
∂θi,k

< 0 ∀θi,k ≤ θ
0
i,k + ε∀s ∈ [T,2T ].

Now consider a solution σ′ to the differential inclusion starting from w(t0 +T ).
Then again from Lemma 11 (we set θi,k = θ 0

i,k+ε), we have θ i,k(σ(s))> θ 0
i,k+ε >

θ 0
i,k− ε for all s > 0. Hence

σ′(s)

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1− ε ∀s≥ T,

which implies

w(t + s)

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1−2ε ∀s ∈ [2T,3T ]

and thus
∂Ki,k(θi,k,w(t + s))

∂θi,k
< 0 ∀θi,k ≤ θ

0
i,k + ε∀t ∈ [T,3T ].

Iterating the same argument, we can show that

∂Ki,k(θi,k,w(t + s))
∂θi,k

< 0 ∀θi,k ≤ θ
0
i,k + ε∀s≥ T.

This implies θ i,k(w(t + s)) > θ 0
i,k + ε for all s ≥ T , which is a contradiction.

Q.E.D.
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D Convergence for Examples in Main Text
In this appendix, we check beliefs in each example covered in the main text con-
verge to a steady state.

Cournot Duopoly: Equation 11.
Consider the Cournot model in Section 4.1. Suppose that the inverse demand
function is given by

Q(x1 + x2,a,θ) = a− (1−θ)(x1 + x2)

and the cost function is linear, i.e., c(xi) = cxi where c ∈ (0,a). Suppose also that
Θ = [−d,d] where d ∈ (0, 1

3) is a fixed parameter. We will show that for each
misspecification, the belief converges to a steady state as long as misspecification
is small (i.e., A is sufficiently close to a).

First-order misspecification. Since the inverse demand function Q is linear in
θ , the identifiability condition holds, and hence Proposition 2 ensures that the
belief converges almost surely under first-order misspecification. In particular,
when the steady state is unique, the belief converges there almost surely regardless
of the initial prior.

Double misspecification. To prove convergence for small misspecification, it
suffices to check the conditions stated in Proposition 4.

Given misspecified parameters A1,A2, let f2(θ1) denote the set of “steady-state
belief” of player 2, when player 1’s belief is fixed at θ1. Note that the incentive-
compatibility conditions and the consistency condition are:

x1 =
A1− c

2(1−θ1)
− x̂2

2
,

x2 =
A2− c

2(1−θ2)
− x̂1

2
,

x̂1 =
A2− c

2(1−θ2)
− x2

2
,

x̂2 =
A1− c

2(1−θ1)
− x1

2
,

A2− (1−θ2)(x̂1 + x2) = a− (1−θ
∗)(x1 + x2).
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The first four equations imply x̂1 = x2 =
A2−c

3(1−θ2)
and x1 = x̂2 =

A1−c
3(1−θ1)

. Plugging
them into the last equation,

A2−2(1−θ2)
A2− c

3(1−θ2)
−a+(1−θ

∗)(
A1− c

3(1−θ1)
+

A2− c
3(1−θ2)

) = 0,

which is equivalent to

θ2 = 1− (1−θ1)(1−θ ∗)(A2− c)
(1−θ1)(A2 +3a−4c)− (1−θ ∗)(A1− c)

.

So for any θ1, f2(θ1) is a singleton. Also, at A1 = A2 = a,

∂ f2(θ1)

∂θ1
=− (1−θ ∗)2

(3−4θ1 +θ ∗)2 .

This derivative is negative and larger than −1 if θ1,θ
∗ ∈ [−1

3 ,
1
3 ]. Hence, if A1

and A2 are sufficiently close to a, then |∂ f2(θ1)
∂θ1
| ∈ (0,1).

Similarly, given misspecified parameters, let f1(θ2) denote the set of “steady-
state belief” of player 1, when player 2’s belief is fixed at θ2. Then we can show
that f1(θ2) is a singleton for all θ2 and |∂ f1(θ2)

∂θ2
| ∈ (0,1). A proof is similar to that

for f2, and hence is omitted.

Cournot Duopoly: Equation 12.
Suppose the Cournot model with c(xi) = cxi where c≥ 0, a < 1, Θ = [θ ,θ ] where
c < θ < θ , and

Q(x1 + x2,a,θ) = θ − (1−a)(x1 + x2).

First-order misspecification. Note that the identifiability condition is satisfied,
and hence Proposition 2 implies that the belief converges almost surely to a steady
state.

Double misspecification. To prove convergence for small misspecification, it
suffices to check the conditions stated in Proposition 4.
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Given misspecified parameters A1,A2, let f2(θ1) denote the set of “steady-state
belief” of player 2, when player 1’s belief is fixed at θ1. Note that the incentive-
compatibility conditions and the consistency condition are:

x1 =
θ1− c

2(1−A1)
− x̂2

2
,

x2 =
θ2− c

2(1−A2)
− x̂1

2
,

x̂1 =
θ2− c

2(1−A2)
− x2

2
,

x̂2 =
θ1− c

2(1−A1)
− x1

2
,

θ2− (1−A2)(x̂1 + x2) = θ
∗− (1−a)(x1 + x2).

From the first four equations, x̂1 = x2 =
θ2−c

3(1−A2)
and x1 = x̂2 =

θ1−c
3(1−A1)

. Plugging
them into the last equation and arranging,

θ2 =
1−A2

2−a−A2

(
−2c+

(1−a)c
1−A2

+3θ
∗− (1−a)(θ1− c)

1−A1

)
.

Hence, for any θ1, f2(θ1) is a singleton. Also,

∂ f2(θ1)

∂θ1
=− (1−a)(1−A2)

(1−A1)(2−a−A2)
.

Note that this derivative is negative and larger than−1 if A1 and A2 are sufficiently
close to a. Hence, |∂ f2(θ1)

∂θ1
| ∈ (0,1) for any θ1, θ2, and θ ∗.

Similarly, given misspecified parameters, let f1(θ2) denote the set of “steady-
state belief” of player 1, when player 2’s belief is fixed at θ2. Then an argument
similar to the one above shows that f1(θ2) is a continuous function and |∂ f1(θ2)

∂θ2
| ∈

(0,1).

Team Production: Example 1.
Consider the team production model in Section 4.2. Suppose that Q is given by

Q(x1,x2,a,θ) = θ(x1 + x2 + kx1x2 +a)

and the cost function is c(xi) =
c
2x2

i where c > 0. We will show that for each
misspecification, the belief converges to a steady state when c = A1 = A2 = a = 2,
k ∈ [−4,4], and Θ = [0.1,0.3].
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First-order misspecification. Since the inverse demand function Q is linear in
θ , the identifiability condition holds, and hence Proposition 2 ensures that the
belief converges almost surely under first-order misspecification.

Double misspecification. To prove convergence for small misspecification, it
suffices to check the conditions stated in Proposition 4.

Given misspecified parameters A1,A2, let f2(θ1) denote the set of “steady-state
belief” of player 2, when player 1’s belief is fixed at θ1. Note that the incentive-
compatibility conditions and the consistency condition are:

x1 =
θ1(1+ kx̂2)

c
,

x2 =
θ2(1+ kx̂1)

c
,

x̂1 =
θ2(1+ kx2)

c
,

x̂2 =
θ1(1+ kx1)

c
,

θ2(x̂1 + x2 + kx̂1x2 +A2) = θ
∗(x1 + x2 + kx1x2 +a).

The first four equations imply x̂1 = x2 = θ2
c−θ2k and x1 = x̂2 = θ1

c−θ1k . Plugging
them into the last equation,

θ2

(
2θ2

c−θ2k
+ k

θ 2
2

(c−θ2k)2 +A2

)
−θ
∗
(

θ1

c−θ1k
+

θ2

c−θ2k
+ k

θ1

c−θ1k
θ2

c−θ2k
+a
)
= 0,

which is equivalent to

G := 2θ
2
2 +

kθ 3
2

c−θ2k
−θ

∗
θ2 +(c−θ2k)(A2θ2−aθ

∗)− θ ∗θ1c
c−θ1k

= 0.

Note that G is strictly decreasing in θ1, and is also strictly increasing in θ2
if ∂G

∂θ2
> 0, and this holds when θ is sufficiently close to zero (see ∂G

∂θ2
in the

following). If it holds, then for any θ1, f2(θ1) is a singleton. Also,

d f2(θ1)

dθ1
=−

∂G
∂θ1
∂G
∂θ2

=−
− θ ∗c2

(c−θ1k)2

4θ2 +
3kθ 2

2
c−θ2k +

k2θ 3
2

(c−θ2k)2 −θ ∗−2θ2A2k+A2c+akθ ∗
.
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Because c=A1 =A2 = a= 2, ∂G
∂θ2

= 4+4θ2(1−k)+θ ∗(2k−1)+ 2kθ 2
2 (3−kθ2)

(2−kθ2)2 >

0 for any k ∈ [−4,4]. Also, because d f2(θ1)
dθ1

is increasing in θ ∗ and hence is maxi-

mized at θ ∗ = θ̄ , given Θ = [0.1,0.3], we have |d f2(θ1)
dθ1
|< 1 for any k ∈ [−4,4].

Similarly, given misspecified parameters, let f1(θ2) denote the set of “steady-
state belief” of player 1, when player 2’s belief is fixed at θ2. Then we can show
that f1(θ2) is a singleton for all θ2 and |∂ f1(θ2)

∂θ2
| ∈ (0,1). A proof is similar to that

for f2, and hence omitted.

Team Production: Example 2.
Consider the team production model in Section 4.2. Suppose that Q is given by

Q(x1,x2,a,θ) = θ(ax1 + x2 + kx1x2 + s)

and the cost function is c(xi) =
c
2x2

i where c > 0. We will show that for each
misspecification, the belief converges to a steady state when A1 = A2 = a = 1,
c = s = 2, k ∈ [−4,4], and Θ = [0.1,0.3].

First-order misspecification. Since the inverse demand function Q is linear in
θ , the identifiability condition holds, and hence Proposition 2 ensures that the
belief converges almost surely under first-order misspecification.

Double misspecification. To prove convergence for small misspecification, it
suffices to check the conditions stated in Proposition 4.

Given misspecified parameters A1,A2, let f2(θ1) denote the set of “steady-state
belief” of player 2, when player 1’s belief is fixed at θ1. Note that the incentive-
compatibility conditions and the consistency condition are:

x1 =
θ1(A1 + kx̂2)

c
,

x2 =
θ2(1+ kx̂1)

c
,

x̂1 =
θ2(A2 + kx2)

c
,

x̂2 =
θ1(1+ kx1)

c
,

θ2(A2x̂1 + x2 + kx̂1x2 + s) = θ
∗(ax1 + x2 + kx1x2 + s).
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The first four equations imply x1 =
θ1(A1c+θ1k)

c2−θ 2
1 k2 , x̂2 =

θ1(c+θ1kA1)

c2−θ 2
1 k2 , x̂1 =

θ2(A2c+θ2k)
c2−θ 2

2 k2 ,x2 =

θ2(c+θ2kA2)

c2−θ 2
2 k2 . Plugging them into the last equation,

G :=θ2

(
θ2(c+A2

2c+2A2kθ2)

c2−θ 2
2 k2 + k

θ 2
2 (A2c+θ2k)(c+θ2kA2)

(c2−θ 2
2 k2)2 + s

)
−θ

∗
(

a
θ1(A1c+θ1k)

c2−θ 2
1 k2 +

θ2(c+θ2kA2)

c2−θ 2
2 k2 + k

θ1(A1c+θ1k)
c2−θ 2

1 k2
θ2(c+θ2kA2)

c2−θ 2
2 k2 + s

)
= 0.

If A1 = A2 = a = 1, then it becomes

θ2

(
2θ2

c−θ2k
+ k

θ 2
2

(c−θ2k)2 + s
)
−θ
∗
(

θ1

c−θ1k
+

θ2

c−θ2k
+ k

θ1

c−θ1k
θ2

c−θ2k
+ s
)
= 0,

which is reduced to

G := 2θ
2
2 +

kθ 3
2

c−θ2k
−θ

∗
θ2 + s(c−θ2k)(θ2−θ

∗)− θ ∗θ1c
c−θ1k

= 0.

As in the previous example, when s = c = 2 and Θ = [0.1,0.3], both ∂G
∂θ2

> 0 and

|d f2(θ1)
dθ1
|< 1 hold for any k ∈ [−4,4].

Similarly, given misspecified parameters, let f1(θ2) denote the set of “steady-
state belief” of player 1, when player 2’s belief is fixed at θ2. Then we can show
that f1(θ2) is a singleton for all θ2 and |∂ f1(θ2)

∂θ2
| ∈ (0,1). A proof is similar to that

for f2, and hence omitted.
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