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Abstract

We consider strategic players who may have a misspecified view about
an environment, and investigate their long-run behavior. Each period, play-
ers simultaneously take actions, observe a public outcome, and then update
own belief about an uncertain economic state by using Bayes’ rule. We
provide a condition under which players’ beliefs and actions converge to a
steady state, and then characterize how one’s misspecification influences the
long-run (steady-state) actions. When a player has a biased view about the
physical environment (e.g., overconfidence on own capability or prejudice
on an opponent’s capability), the presence of strategic interaction influences
the size of the impact of misspecification, but not the direction. In particular,
when the game is symmetric, the presence of strategic interaction amplifies
the deviation of the long-run actions from those in the correctly specified
model. When a player misspecifies the opponent’s view about the envi-
ronment (e.g., the player is not aware of the opponent’s bias), the strategic
interaction generates a directional impact for the long-run actions. We ex-
tensively discuss implications to a variety of applications, such as Cournot
duopoly, team production, tournaments, and discrimination.
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1 Introduction

Economic agents often take actions based on a subjective and potentially misspec-
ified view of the world.1 Past work has shown that in a static game-theoretic envi-
ronment, one’s misspecification can improve her equilibrium payoff. The reason
is that one’s misspecification can influence the opponent’s action through strategic
interaction. For example, in a one-shot Cournot game, if a firm is overconfident
about the demand and willing to produce more, the rival firm best-responds to
it and produces less, which improves the overconfident firm’s profit (Kyle and
Wang, 1997). We build on this literature by considering a Bayesian-learning fea-
ture; we develop a dynamic model in which misspecified players learn an un-
known economic state from public signals. Our primary interest is to understand
how misspecified players process information, and how it influences their long-
run behavior.

We believe that this question is of importance for the following reason. In
many economic applications, it is assumed that players know all relevant aspects
of the environment. This assumption is often justified by the argument that even
if some economic variable is initially unknown, as long as it is fixed over time,
players will eventually learn it from observed outcomes. However, when players
have a misspecified view about some aspect of the world, they may process in-
formation incorrectly and may fail to learn the true economic variable. Thus, to
understand the long-run behavior of misspecified players, we need to consider a
dynamic model (rather than a one-shot model) and carefully think about how they
update the beliefs over time.

More generally, when players have a misspecified view about the world, it is
natural to expect that they will eventually change the belief about some economic

1As experimental and empirical evidence, people exhibit overconfidence in strategic entries
(Camerer and Lovallo, 1999), corporate investments (Malmendier and Tate, 2005), and merger
decisions (Malmendier and Tate, 2008). There is also recent evidence that overconfidence is per-
sistent; Hoffman and Burks (2020) find that workers are persistently overconfident about their
own productivity, and Huffman, Raymond, and Shvets (2019) find that managers are persistently
overconfident about future performance.

2



variable, as they observe outcomes which are systematically different from the an-
ticipation. For example, if a firm is persistently overconfident about some aspect
of the demand function (e.g., the intercept of the inverse demand curve), on aver-
age, actual prices are lower than the firm’s anticipation. So it is likely that after
a long time, this firm becomes (unrealistically) pessimistic about other aspect of
the demand (e.g., the slope of the inverse demand curve). Similarly, in tourna-
ments, if an agent is persistently overconfident about her own capability, after a
series of unexpected losses, she may start to think that the tournament is unfair.
Our framework is useful to understand players’ long-run behavior in these cases,
and we show that this learning feature has a substantial impact on the equilibrium
outcomes in various applications.

Formally, we consider a two-player Bayesian learning problem with model
misspecification. In each period t, each player i simultaneously chooses an action
xi and then learns an unknown economic state θ from a public signal y. The dis-
tribution of the signal y is influenced by the state θ , the action profile x = (x1,x2),
and a parameter a which describes the environment/technology. For example, in
a Cournot duopoly, the distribution of the market price y depends on the quantity
x1 + x2, as well as the intercept a and the slope θ of the inverse demand curve.

We assume that a player may have a misspecification, in that she may have
a persistently biased view about the parameter a. In Section 3, we consider the
case in which player 1 is unbiased and knows the true environment, but player 2
incorrectly believes that the true parameter is A , a. We call it first-order misspec-
ification, as player 2 has an incorrect first-order belief about the parameter a. This
is the simplest form of misspecification, and encompasses a variety of commonly
observed biases, including overconfidence about one’s own capability, prejudice
about the opponent’s capability, misestimation about market demand, and so on.

We provide a condition in which players’ beliefs (about θ ) and actions con-
verge to a steady state after a long time. Then, we characterize how player 2’s
misspecification influences this steady state. It turns out that the impact of mis-
specification on the biased player’s action can be written as a product of two terms,
a base misspecification effect and a multiplier effect. The base misspecification ef-
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fect measures how one’s misspecification would influence her own action if there
was no strategic interaction between the players, in that the opponent takes a
constant action every period. This essentially measures the impact of misspecifi-
cation in a single-agent Bayesian learning problem, which is studied in specific
contexts in the literature (e.g., Fudenberg, Romanyuk, and Strack (2017), Heid-
hues, Kőszegi, and Strack (2018), and He (2019)).

The multiplier effect is new, and it describes how strategic interaction ampli-
fies/reduces the base misspecification effect. When a biased player changes her
action due to the base misspecification effect, the opponent best-responds to it,
which in turn influences the biased player’s steady-state belief and the optimal
action, and this process continues repeatedly. The multiplier effect quantifies the
overall size of this feedback process. Under a regularity condition, the multiplier
effect is positive, which means that strategic interaction can influence the size of
the impact of misspecification, but not the direction. In particular, if the game is
symmetric as in common-interest games, the multiplier effect is larger than one,
so both strategic complements and substitutes amplify the base misspecification
effect.

To fix ideas, consider a Cournot duopoly in which some aspect of the demand
(e.g., the slope of the inverse demand curve) is unknown. Suppose that one of the
firms is persistently overconfident about other aspect of the demand (e.g., the inter-
cept of the inverse demand curve). This overconfidence boosts the firm’s incentive
to produce, and as noted earlier, it improves the overconfident firm’s equilibrium
payoff in the static game. This is the direct effect of overconfidence. However, in
our dynamic model, the firm’s overconfidence leads to incorrect learning, which
weakens the incentive to produce; indeed, the overconfident firm finds that re-
alized prices are systematically lower than the anticipation on average, so after
a long time, it becomes unrealistically pessimistic about the unknown economic
state. This is the indirect learning effect of overconfidence, and the base misspec-
ification effect is the sum of these two countervailing forces. If the direct effect
outweighs the indirect effect, the base misspecification effect is positive. In this
case, the result of Kyle and Wang (1997) persists even in the long run, that is, the
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overconfident firm produces more and earns a better profit than in the correctly-
specified case. However, if the indirect effect is larger, this result is overturned:
while overconfidence improves the static equilibrium payoff, in the long run, it is
detrimental and the overconfident firm earns a lower profit.

When there are multiple players, they may not only have a bias about a physi-
cal environment, but have a bias about the opponent’s view about the environment.
For example, a junior scholar may incorrectly believe that he is undervalued by a
senior colleague (in reality, the senior colleague correctly understands the junior
scholar’s capability). Or, a worker (she) may be unaware that a co-worker (he)
is overconfident about his own capability. In Section 4, we consider how such
“second-order misspecification” influences players’ behavior. We consider the
case in which one of the players has second-order misspecification (i.e., she cor-
rectly specifies a but has an incorrect view about the opponent’s view about a), the
case in which one of the players has “double misspecification” in that she has both
first-order and second-order misspecification, and the case in which both players
have double misspecification. The analysis is significantly more complicated than
in the case of first-order misspecification, because a player with second-order or
double misspecification has an incorrect view about how the opponent updates the
belief, and we need to keep track of how the belief of such a “hypothetical player”
evolves over time. Nonetheless, under an additional assumption, we find that
players’ actions and beliefs still converge to a steady state. We also show that the
impact of one’s misspecification on the steady-state outcome is still represented
by a product of the base misspecification effect and the multiplier effect.

To illustrate how second-order misspecification influences players’ behavior,
consider the Cournot model, and as in the case of first-order misspecification, as-
sume that one of the firms (say, firm 2) is overconfident about some aspect of the
demand. In addition, assume now that the rival firm (say, firm 1) has second-order
misspecification, i.e., firm 1 is not aware of firm 2’s overconfidence and incor-
rectly believes that firm 2 has an unbiased view about the demand. In this setup,
firm 2’s overconfidence cannot directly affect the opponent’s production. Indeed,
even though firm 2 is overconfident and willing to produce more, firm 1 is not
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aware of it and hence does not change the production level. Accordingly, in the
one-shot game, firm 2’s overconfidence never improves the equilibrium payoff.
Nonetheless, we find that in the long run, overconfidence may be beneficial. To
see why, note that firm 1 is not aware of firm 2’s overconfidence, and hence it
makes a wrong prediction about firm 2’s production. In particular, for some pa-
rameter values, firm 1 underestimates firm 2’s production, in which case it finds
that a market price is systematically lower than the anticipation. Then as time
goes, firm 1 becomes pessimistic about an unknown economic state and reduces
the production, which benefits the overconfident firm 2.

A key here is that even though firm 1 has an unbiased view about the physical
environment, incorrect learning occurs due to second-order misspecification. A
similar idea can be used to explain bias transmission. In Section 4.4.3, we con-
sider a teacher who has a bias against female students. We show that the teacher’s
bias can endogenously induce female students’ negative self-stereotypes, if the
students are not aware of the teacher’s bias.

In Section 5, we present a general model which subsumes all of the aforemen-
tioned misspecifications as special cases, and characterize the asymptotic behavior
of players’ actions an beliefs. Section 6 summarizes the related literature.

2 Setup

There are two players i = 1,2 and infinitely many periods t = 1,2, · · · . At the
beginning of the game, an unobservable economic state θ ∗ is drawn from a closed
interval Θ = [θ ,θ ], according to a common prior distribution µ ∈ 4Θ. In each
period t, each player i has a belief µ t

i ∈ 4Θ about θ , and chooses an action xi

from a closed interval Xi = [0,xi]. Player i’s action xi is not observable by the other
player j , i. Given an action profile x= (x1,x2), the players observe a noisy public
signal y = Q(x1,x2,a,θ ∗)+ ε , where a ∈ R is a fixed parameter which describes
a physical environment (e.g., a parameter which determines a market demand, a
player’s capability, etc) and ε is a random noise whose distribution is N(0,1).
Each player i receives a payoff ui(xi,y). Both Q and ui are twice continuously
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differentiable.
Crucially, players may have bias about the environment, and as a result, and

the parameter a is not common knowledge. We allow a variety of bias, including
bias about the parameter a, bias about the opponent’s bias about the parameter a,
and so on. In what follows, we will consider each bias separately.

3 First-Order Misspecification

We first consider the simplest form of misspecification, called first-order misspec-
ification.

3.1 First-Order Misspecification: Characterization

Suppose that one of the players (player 2) has a biased view about the parame-
ter a, whereas the other player is unbiased. Specifically, consider the following
information structure:

• Player 1 believes that for each parameter θ , the signal y is given by y =

Q(x1,x2,a,θ)+ ε .

• Player 2 (incorrectly) believes that for each parameter θ , the signal y is
given by y = Q(x1,x2,A,θ)+ ε , where A , a.

• The above beliefs are common knowledge (e.g., player 2 believes that player
1 believes that y = Q(x1,x2,a,θ)+ ε , and the like).

This is the case in which players “agree to disagree” with the level of the pa-
rameter a. Kyle and Wang (1997) consider a short-run effect of this first-order
misspecification, i.e., they consider how it influences players’ actions in a variant
of one-shot Cournot game. In this section, we consider a long-run effect of this
misspecification.

Player 1’s subjective expected stage-game payoff given an action profile x and
a state θ is

U1(x,θ) = E[u1(x1,Q(x,a,θ)+ ε)]
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and player 2’s subjective expected stage-game payoff is

U2(x,A,θ) = E[u2(x2,Q(x,A,θ)+ ε)],

where the expectation is taken with respect to ε . Note that player 2 evaluates pay-
offs given her subjective signal distribution Q(x,A,θ)+ε . To economize notation,
we will write U2(x,θ) instead of U2(x,A,θ) when it does not cause a confusion.

We assume that players are myopic, so that they play a Nash equilibrium each
period. In period one, both players have the same belief µ1

1 = µ1
2 = µ , so a Nash

equilibrium (x1
1,x

1
2) solves the first-order condition ∂E[Ui(x,θ)|µ]

∂xi
= 0 for each i,

where the expectation is taken with respect to θ . At the end of period one, players
observe a public signal y1, and update the posterior beliefs using Bayes’ rule.
Assuming that no one has deviated in period one, each player i’s posterior belief
µ2

i in period two is given by

µ
2
1 (θ) =

µ1
1 (θ) f (y−Q(x1,a,θ))∫

Θ
µ1

1 (θ̃) f (y−Q(x1,a, θ̃))dθ̃
,

µ
2
2 (θ) =

µ1
1 (θ) f (y−Q(x1,A,θ))∫

Θ
µ1

1 (θ̃) f (y−Q(x1,A, θ̃))dθ̃
,

where x1 is the Nash equilibrium played in period one and f is the density function
of the noise term ε . Note that player 2’s posterior µ2

2 differs from player 1’s
posterior µ2

1 , as she incorrectly believes that the mean output is Q(x1,A,θ) rather
than Q(x1,a,θ). These posteriors are common knowledge among players.2 So in
period two, players play a Nash equilibrium given the belief profile µ2 = (µ2

1 ,µ
2
2 ),

which solves ∂E[Ui(x,θ)|µ2
i ]

∂xi
= 0 for each i. Likewise, in any subsequent period t ≥ 3,

players play a Nash equilibrium given the belief profile µ t = (µ t
1,µ

t
2), where µ t is

computed by Bayes’ rule.
Our goal is to characterize the long-run outcome in this Bayesian learning

model, i.e., how players’ actions xt and beliefs µ t look like after a long time.
While the evolution of the biased player’s belief is governed by a complicated

2This is because the players’ information structure about the parameter a is common knowl-
edge.
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stochastic process, we show in Section 5 that there is a sufficient condition under
which players’ beliefs and actions converge almost surely to a steady state after a
long time. As will be seen, this condition is satisfied in many economic examples,
such as Cournot competition and team production. So in what follows, we will
assume that players’ beliefs and actions converge to a steady state, and investigate
the property of the steady state.

Formally, a steady state in this Bayesian learning model is a pair (x∗1,x
∗
2,µ
∗
1 ,µ

∗
2 )

of an action profile and a belief profile which satisfies the following four condi-
tions:

x∗1 ∈ argmax
x1

U1(x1,x∗2,θ
∗), (1)

x∗2 ∈ argmax
x2

U2(x∗1,x2,θ2), (2)

µ
∗
1 = 1θ∗, (3)

µ
∗
2 = 1θ2 s.t. Q(x∗,A,θ2) = Q(x∗,a,θ ∗). (4)

The first two conditions are incentive compatibility conditions, which require that
each player maximizes her payoff given some beliefs. The next two conditions
require that these beliefs satisfy consistency: (3) asserts that the unbiased player
1 correctly learns the true state θ ∗ in a steady state. (4) requires that player 2’s
belief be concentrated on a state θ2 with which her subjective signal distribution
coincides with the true distribution. This condition must be satisfied in a steady
state, because otherwise, player 2 is “surprised” by observed signals being differ-
ent from what she thinks, and changes her belief about θ accordingly.

In general, this steady-state belief θ2 is different from the true state θ ∗, i.e., the
biased player 2 cannot learn θ ∗ correctly. For example, consider the case in which
the mean output Q is increasing in a and θ . By the implicit function theorem, we
have ∂θ2

∂A = −Qa
Qθ

< 0. So if player 2 is overconfident about the parameter a, she
underestimates the state θ . Intuitively, the overconfident player observes signals
which are lower than her anticipation, and becomes pessimistic about the state θ .
We assume that for each (x,A), there is a unique state θ2 which solves the consis-
tency condition Q(x,a,θ ∗) = Q(x,A,θ), and we denote it by θ2(x,A). Intuitively,
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this θ2(x,A) is player 2’s long-run belief; if players choose the same action profile
x every period, then almost surely, player 2’s belief will be concentrated on the
state θ2(x,A) after a long time (Berk (1966)). Player 1’s long-run belief is defined
as θ1(x,A) = θ ∗ for all x, because she is unbiased and can learn the true state θ ∗

regardless of players’ play.
The steady-state action profile is different from a Nash equilibrium, because

player 2’s belief is endogenously determined by the consistency condition (4).
Indeed, it is characterized as an intersection of the asymptotic best response cor-
respondences (rather than the standard best response correspondences), which is
defined as

BRi(x−i) =

{
xi

∣∣∣∣∣xi ∈ argmax
x′i

Ui
(
x′i,x−i,θi(x,A)

)}
. (5)

Intuitively, BRi(x−i) describes player i’s optimal action in the long run, when
the opponent chooses the same fixed action x−i each period and player i updates
the belief over time. Player 1’s asymptotic best response BR1 coincides with the
standard best response correspondence given the state θ ∗, because she is unbiased
and can learn the true state θ ∗ regardless of the opponent’s play. In contrast, player
2’s asymptotic best response BR2 is different from the standard best response,
because her long-run belief θ2(x,A) is endogenously determined; if the opponent
chooses the same action x1 every period and if player 2’s action converges to some
x2, then the limiting belief must be concentrated on θ2(x,A). Player 2’s limiting
action x2 must be optimal given this belief, as stated in the definition of BRi. By a
fixed-point theorem, BRi(x−i) is non-empty for all x−i. Also a standard argument
shows that BRi is upper hemi-continuous in x−i.

As is well-known, the slope of the standard best-response function is given
by −∂ 2Ui/∂xi∂x j

∂ 2Ui/∂ 2xi
; note that both the denominator and the numerator measure the

impact of one’s action on player i’s marginal utility. It turns out that the slope BR′i
of the asymptotic best response function can be computed by a similar formula,

BR′i =−
Mi j

Mii
,
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where for each i and j (possibly i = j),

Mi j =
∂

∂x j

(
∂Ui(x,θ)

∂xi

∣∣∣∣
θ=θi(x,A)

)

=
∂ 2Ui(x,θi)

∂xi∂x j

∣∣∣∣
θi=θi(x,A)

+
∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂x j

.

measures the impact of player j’s action on player i’s marginal utility in the long
run, assuming that players choose the same action every period.3 Intuitively,
player j’s action x j influences player i’s marginal utility directly and indirectly
through the long-run belief θi(x,A). The first term of Mi j represents the direct
effect, and the second term represents the indirect effect through the belief. The
indirect effect is zero for i = 1, because player 1’s long-run belief is constant and
does not depend on the actions (i.e., θ1(x,A) = θ ∗ for all x). Also, for i = 2, the
indirect effect disappears in the limit as A→ a, because θ2(x,a) = θ ∗ for all x. So
when model misspecification is small (i.e., A is close to a), each Mi j is approx-
imated by ∂ 2Ui

∂xi∂x j
, so BR′i is approximately the same as the slope of the standard

best-response function.
Our first proposition quantifies the impact of player 2’s first-order misspecifi-

cation on the steady-state action, using this slope of the asymptotic best response
curve. We assume that the steady state satisfies the following regularity condition:

Definition 1. A steady state x∗ is regular if the following conditions are satisfied
in x∗: (i) the steady-state action x∗i is uniquely optimal, i.e., Ui(x∗,θi(x∗,A)) >
Ui(xi,x∗−i,θi(x∗,A)) for all i and xi , x∗i , (ii) x∗ and θ2(x∗,A) are interior points,
(iii) BR′1BR′2 , 1, and (iv) Mii , 0 for each i.

The conditions (i) and (ii) are standard. The condition (iii) is satisfied for
generic parameters, and it ensures that the multiplier effect appearing in Proposi-
tion 1 below is well-defined. The condition (iv) requires two inequalities, M11 =
∂ 2U1
∂ 2x1

< 0 and M22 =
∂ 2U2
∂ 2x2

+ ∂θ2
∂x2

∂ 2U2
∂x2∂θ

< 0. The first inequality is simply the second-
order condition for player 1’s incentive compatibility. The second inequality is dif-
ferent from the second-order condition, as it involves the learning effect ∂θ2

∂x2

∂ 2U2
∂x2∂θ

.

3Here we assume that Mii , 0, so that BR′i is well-defined.
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This inequality is satisfied in many economic applications, e.g., it is satisfied if the
second-order condition for player 2’s incentive compatibility holds and misspeci-
fication is small (so that the learning effect is close to zero). Note that Heidhues,
Kőszegi, and Strack (2018) impose a similar condition: They consider Bayesian
learning by a single agent and assume a unique steady state, which requires Mii≤ 0
in the steady state.4 As will be seen, this condition (iv) is useful when we inter-
pret the base misspecification effect appearing in Proposition 1. This condition
also ensures that the slope of the asymptotic best response curve BR′i = −

Mi j
Mii

is
well-defined.5

Finally, let

M2A : =
∂

∂A

(
∂U2(x,A,θ)

∂x2

∣∣∣∣
θ=θ2(x,A)

)

=
∂ 2U2(x,A,θ)

∂x2∂A

∣∣∣∣
θ=θ2(x,A)

+
∂ 2U2(x,A,θ)

∂x2∂θ

∣∣∣∣
θ=θ2(x,A)

∂θ2(x,A)
∂A

(6)

denote the impact of player 2’s bias A on her marginal utility in the long run.
Again, the first term ∂ 2U2

∂x2∂A measures the direct effect, and the second term ∂ 2U2
∂x2∂θ2

∂θ2
∂A

measures the indirect effect through the belief. Now we are ready to state our first
proposition.

Proposition 1 (Steady State under First-Order Misspecification). Let x∗ be a reg-
ular steady state for some parameter A∗.6 Then there is an open neighborhood of

4Indeed, in a single-agent problem, if Mii > 0 in some steady state, then there are multiple
steady states. A proof is akin to that of the second part of Proposition 1, and hence is omitted.

5We conjecture that if there is a steady state with M22 > 0, then it is unstable in the sense that
players’ actions do not converge there with positive probability. At least, we show that if player 1
chooses the steady-state action every period and player 2 learns an unknown state θ , then player
2’s action never converges to a steady state with M22 > 0. The proof is available upon request.

6The regularity conditions (i) and (ii) ensure that the steady state is continuous with respect
to the parameter A and the first-order condition for the incentive compatibility is satisfied there.
The regularity conditions (iii) is to use the implicit function theorem. M11 , 0 and M22 , 0 in the
regularity condition (iv) ensure that the base misspecification effect and the slope of the asymptotic
best response curve are well-defined.
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A∗ such that for any value A in this neighborhood, there is a regular steady state
x∗ which is continuous with respect to A, and we have

∂x∗2
∂A

=−M2A

M22
· 1

1−BR′1BR′2
∂x∗1
∂A

=
∂x∗2
∂A
·BR′1.

Suppose in addition that given the parameter A∗, the steady state is unique and
each asymptotic best response BRi is a continuous function. Then, BR′1BR′2 < 1.7

This proposition shows that the impact of first-order misspecification on the
steady-state action is represented as the base misspecification effect −M2A

M22
times

the multiplier effect 1
1−BR′1BR′2

. The base misspecification effect measures how
player 2’s bias influences her steady-state action x∗2 in the absence of strategic
interaction. To see what it means, consider the case in which player 1 chooses the
same fixed action each period, so player 2 faces a single-agent problem. Suppose
that player 2’s bias A increases a bit. This influences player 2’s marginal utility
by M2A (note that this includes the indirect effect through the steady-state belief),
and hence her optimal long-run action changes. The base misspecification effect
−M2A

M22
measures this change. Since we assume M22 < 0, the sign of the base

misspecification effect coincides with the sign of M2A. That is, player 2’s steady-
state action increases if and only if a change in A has a positive impact on her
marginal utility.

This base misspecification effect is further divided into two parts: Since M2A is
a sum of the direct effect and the indirect effect (see (6)), the base misspecification

7If these additional assumptions do not hold, there may be a steady state with BR′1BR′2 >

1. But it seems that such a steady state is unstable in an evolutionary sense, especially when
misspecification is small. Indeed, in a one-shot game with correctly specified model, a Nash
equilibrium with BR′1BR′2 > 1 is not stable under the replicator dynamics (hence it is not an ESS)
or the best response dynamics. So in practice, if players’ play converge after a long time, it is
natural to expect that BR′1BR′2 < 1 in the steady state.
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effect is rewritten as

−M2A

M22
=− 1

M22

 ∂ 2U2(x∗,A,θ)
∂x2∂A

∣∣∣∣
θ=θ2(x∗,A)︸                             ︷︷                             ︸

direct effect from A’s change

+
∂θ2

∂A
∂ 2U2(x∗,A,θ)

∂x2∂θ

∣∣∣∣
θ=θ2(x∗,A)︸                                    ︷︷                                    ︸

indirect leargning effect through θ2

 .

The first term in the brackets is the direct effect, which measures how player 2’s
bias influences her action, when her belief θ2 is fixed. This coincides with the
impact of one’s bias on her action in a one-shot game with no learning, which
is studied by past work such as Kyle and Wang (1997). The second term in the
brackets is the (indirect) learning effect, which measures how player 2’s bias in-
fluences her action through the steady-state belief θ2; the term ∂θ2

∂A measures how

player 2’s bias influences her steady-state belief, and ∂ 2U2
∂x2∂A measures how it in-

fluences her marginal utility. Intuitively, this learning effect represents how the
biased player modifies her view about the world and how it influences her ac-
tion in the long run. As will be explained later, this effect is the source of the
self-defeating feature in Heidhues, Kőszegi, and Strack (2018).

The multiplier effect 1
1−BR′1BR′2

in Proposition 1 measures how strategic inter-
action between two players amplifies/weakens the base misspecification effect. To
better understand the nature of this multiplier effect, suppose that player 2 changes
her action by ∆. Then player 1 best-responds to it and changes her action by BR′1∆,
which in turn has a feedback effect of BR′1BR′2∆ on player 2’s steady-state action;
note that player 1’s action influences player 2’s optimal action directly and indi-
rectly through her belief θ2(x,A), and both these effects are taken into account in
the asymptotic best response BR′2.

This process continues multiple times; the feedback effect on player 2’s action
influences player 1’s action, which again causes a feedback effect of (BR′1BR′2)

2∆

on player 2’s action, and so on. Summing all these feedback effects, player 2’s
action changes by

∞

∑
k=0

(BR′1BR′2)
k
∆ =

1
1−BR′1BR′2

∆.

So the multiplier 1
1−BR′1BR′2

can be seen as a result of the infinite adjustment process
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between the two strategic players.
The following corollary is an immediate consequence of Proposition 1:

Corollary 1. Suppose that all the assumptions in Proposition 1 (including the
ones in the second part) are satisfied. Then we have the following results:

(i) The multiplier 1
1−BR′1BR′2

is positive. So a strategic interaction influences the
size of the impact of misspecification, but not the direction.

(ii) If sgn(BR′1) = sgn(BR′2), then the multiplier 1
1−BR′1BR′2

is greater than one
and is increasing in |BR′i|. So both strategic substitutes and strategic com-
plements amplify the impact of the first-order misspecification.

(iii) If sgn(BR′1) , sgn(BR′2), then the multiplier 1
1−BR′1BR′2

is less than one and
decreasing in |BR′i|. So a strategic interaction reduces the impact of the
first-order misspecification.

For the special case in which A = a, BRi reduces to the standard best response
curve, so it is fairly easy to compute the slope BR′i. In particular, when the game
is symmetric, we have sgn(BR′1) = sgn(BR′2) in any symmetric equilibrium, so a
strategic interaction amplifies the impact of first-order misspecification.

So far we have assumed that only player 2 is misspecified, but it is straight-
forward to see that a similar result holds even when both players have first-order
misspecification. Suppose that player 1 believes that the true parameter is A1 , a,
and player 2 believes that the true parameter is A2 , a. Suppose also that these
first-order beliefs are common knowledge. For each i, let θi(x,Ai) denote θ which
satisfies the consistency condition Q(x,a,θ ∗) = Q(x,Ai,θi). Intuitively, when
players play the same action profile x every period, player i’s limiting belief (if
exists) must be concentrated on θi(x,Ai). Define each player i’s asymptotic best
response BRi by (5), and let BR′i denote its slope. Then the impact of a marginal
increase in player 2’s misspecification on steady-state actions can be represented
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just as in Proposition 1, that is,

∂x∗2
∂A2

=−M2A

M22
· 1

1−BR′1BR′2
,

∂x∗1
∂A2

=
∂x∗2
∂A2
·BR′1.

The only difference from Proposition 1 is that player 1’s asymptotic best response
is different from the standard best response; now it takes into account the fact that
her long-run belief θ1(x,A1) is endogenously determined.

3.2 First-Order Misspecification: Applications

This subsection investigates applications in Cournot duopoly, team production,
and tournament, with highlighting how first-order misspecification influences the
long-run behavior and welfare.

3.2.1 Cournot duopoly

We first consider a symmetric Cournot duopoly and study how a firm’s bias in-
fluences the equilibrium outcome. In each period, each firm i = 1,2 simulta-
neously chooses its quantity xi. Then, each firm observes a market price y =

Q(x1+x2,a,θ)+ε , where a is a parameter which influences the demand and θ is
an unknown economic state. Firm i’s payoff is ui(xi,y) = xiy− c(xi), where xiy is
firm i’s revenue and c(xi) is firm i’s production cost. Throughout, we assume that
the inverse demand function Q is strictly decreasing and weakly concave in the
first element, and the cost function c is strictly increasing and weakly convex.8

Kyle and Wang (1997), Heifetz, Shannon, and Spiegel (2007), and Englmaier
(2010) study (a variant of) one-shot Cournot competition with linear demand, and
show that a firm who has overconfidence about the intercept and/or the slope of

8These assumptions ensure the concavity of each firm’s payoff function, a downward-sloping
best response curve, and the uniqueness of Nash equilibrium under the correctly specified model.
See, for example, Tirole (1988).
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the inverse demand function earns higher profits than the unbiased rival firm. In-
tuitively, the overconfident firm is willing to produce more than in the correctly
specified model. Knowing that, the unbiased firm reduces its production level in
equilibrium, which yields higher profits to the overconfident firm. This mecha-
nism, which we call the strategic effect, is akin to the commitment to produce
more in the context of quantity competition (e.g., being a first mover in the stan-
dard Stackelberg duopoly).9

A natural question is whether this strategic effect is beneficial for the overcon-
fident firm in the long run. So long as the game is repeated, the overconfident firm
is persistently “surprised” by a realized price being lower than its anticipation.
This suggests that the overconfident firm’s subjective view about the world would
change after a long time, in order to better explain such lower prices. Accordingly,
the overconfident firm changes the behavior, and the rival firm best-responds to it.
In what follows, we will study how this influences the equilibrium outcome.

Suppose that firm 2 incorrectly believes that the true parameter is A> a, where
QA > 0 and QxA ≥ 0 for all x with x1 + x2 > 0. Intuitively, firm 2 is overconfident
about the price level Q and (weakly) overconfident about the slope of the inverse
demand curve Qx. In the special case of linear demand, this assumption reduces to
the one imposed in the literature (e.g., Kyle and Wang (1997)). Firm 1 knows that
the true parameter is a, and the firms’ first-order beliefs are common knowledge.
We also assume that Qθ > 0 and Qxθ ≥ 0 for all x with x1 + x2 > 0, i.e., the state
θ has positive impacts on the price level and the slope of the inverse demand
function.

Here are two examples which satisfy the assumptions above:10

Q(x1 + x2,a,θ) = a− (1−θ)(x1 + x2), (7)

and

Q(x1 + x2,a,θ) = θ − (1−a)(x1 + x2). (8)

9See also Fershtman and Judd (1987) who investigate the strategic effect induced by managerial
compensation contracts under a correctly specified model.

10In these examples, as Q is linear in θ , the identifiability condition in Section 5 is satisfied.
Hence, from Proposition 13, the actions and the beliefs converge to a steady state almost surely.
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In the first example (7), firm 2 is overconfident about the intercept of the inverse
demand function, and learns the slope of the inverse demand function. This hap-
pens, for example, when the firm has overconfidence about the preference of the
representative customers and learns their number.11 In the second example (8),
firm 2 is overconfident about the slope of the inverse demand function, and learns
the intercept. This happens, for example, when the firm has overconfidence about
the number of the customers and learns their preference.12

In both these examples, if the firms interact only once, the overconfident firm
earns a higher equilibrium profit than the rival firm (Kyle and Wang, 1997). How-
ever, it turns out that these two examples give qualitatively different long-run out-
comes; as will be explained, a firm’s overconfidence improves its long-run payoff
in the second example, but it is detrimental in the first example.

Recall from Proposition 1 that the impact of firm 2’s overconfidence on its own
action is represented as the base misspecification effect−M2A

M22
times the multiplier.

For ease of exposition, we assume that misspecification is small (i.e., A is close
to a) so that M22 < 0 and the multiplier is positive. Simple algebra shows that the
base misspecification effect in our Cournot model is written as

− 1
M22


direct effect︷                   ︸︸                   ︷

QA(x∗1 + x∗2,A,θ2)+

indirect effect︷                         ︸︸                         ︷
∂θ2

∂A
Qθ (x∗1 + x∗2,A,θ2)︸                                                     ︷︷                                                     ︸

on the price level

+x∗2


direct effect︷                    ︸︸                    ︷

QxA(x∗1 + x∗2,A,θ2)+

indirect effect︷                          ︸︸                          ︷
∂θ2

∂A
Qxθ (x∗1 + x∗2,A,θ2)︸                                                       ︷︷                                                       ︸

on the slope


 .

(9)

By the implicit function theorem, we have ∂θ2
∂A = −QA(x∗1+x∗2,A,θ2)

Qθ (x∗1+x∗2,A,θ2)
< 0. Plugging

this into (9), the first two terms in the brackets cancel out. Intuitively, this is a
consequence of the consistency condition (4); in the long run, the overconfidence
about the price level is offset by a pessimistic view about the parameter θ , and the
firm correctly predicts the average price level. Accordingly, the base misspecifi-

11Suppose that there are 1
1−θ

customers, and each of them purchases a− p units of products,
where p denotes a price. Then the total demand is x = a−p

1−θ
, which results in the inverse demand

function p = a− (1−θ)x.
12Suppose that there are 1

1−a customers, and each of them purchases θ − p units of products.
Then the total demand is x = θ−p

1−a , which results in the inverse demand function p = θ − (1−a)x.
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cation effect is simplified to

−
x∗2

M22

[
QxA(x∗1 + x∗2,A,θ2)−

QA(x∗1 + x∗2,A,θ2)

Qθ (x∗1 + x∗2,A,θ2)
Qxθ (x∗1 + x∗2,A,θ2)

]
. (10)

(10) implies that the overconfident firm’s long-run action crucially relies on
its steady-state belief about the slope of the inverse demand curve. Suppose first
that QxA− QA

Qθ
Qxθ < 0, i.e., the firm is pessimistic about the demand slope in the

steady state. In this case, the base misspecification effect is negative, and the
overconfident firm produces less in equilibrium. The rival firm best-responds to it
and produces more, which decreases the overconfident firm’s equilibrium payoff.
Hence, the firm’s overconfidence is detrimental in the long run. It corresponds to
the first example (7), where QxA− QA

Qθ
Qxθ =− 1

x1+x2
< 0. Intuitively, after observ-

ing unexpectedly low prices, the overconfident firm becomes pessimistic about the
demand slope and reduces the production level, which hurts own long-run profit.

Next, suppose that QxA− QA
Qθ

Qxθ > 0, i.e., the overconfident firm is optimistic
about the slope in the steady state. In this case, the base misspecification effect
is positive, and hence the overconfident firm produces more than in the correctly
specified model. The rival firm best-responds to it and produces less, which im-
proves the overconfident firm’s equilibrium payoff. Hence, the firm’s overconfi-
dence is beneficial even in the long run. It corresponds to the second example (8),
where QxA− QA

Qθ
Qxθ = 1 > 0. In this example, the overconfident firm becomes

pessimistic about the demand intercept over time, but its overconfidence about the
demand slope is persistent. Given this optimistic view about the demand slope, in
the steady state, the overconfident firm keeps producing more than the rival firm,
and earns a higher long-run profit.

Remark 1. From (9), the indirect learning effect in this Cournot model is

− 1
M22

(
∂θ2

∂A
Qθ (x∗1 + x∗2,A,θ2)+ x∗2

∂θ2

∂A
Qxθ (x∗1 + x∗2,A,θ2)

)
.

Since we assume Qθ > 0 and Qxθ ≥ 0, this effect is negative. This implies that
learning mitigates the short-run effect of overconfidence; i.e., in the long run, the
overconfident firm produces less and earns a lower profit than in the corresponding
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one-shot model. When QxA− QA
Qθ

Qxθ > 0 or equivalently Qxθ

Qθ
< QxA

QA
, this learning

effect is relatively small, so overconfidence is still beneficial in the long run. By
contrast, when Qxθ

Qθ
> QxA

QA
, the learning effect outweighs the short-run strategic

effect, so overconfidence is detrimental in the long run.

3.2.2 Team production

Consider two players working on a joint project. Each period, each player i
chooses an effort level xi, and observes a stochastic output y = Q(x,a,θ ∗) + ε

where a is the total capability of the players and θ ∗ is an unknown fundamen-
tal. We assume that Q is twice-continuously differentiable and symmetric in that
Q(x1,x2,a,θ) = Q(x2,x1,a,θ). Assume Qxi > 0, Qa > 0, and Qθ > 0. Player
i’s payoff is y− c(xi), where c(xi) is the effort cost. Assume c′ > 0. Assume
also that there is a unique Nash equilibrium xcorrect, and it is symmetric in that
xcorrect

1 = xcorrect
2 .

Suppose that player 2 has first-order misspecification, in that she incorrectly
believes that the capability is A , a. When A > a, it represents player 2’s over-
confidence about her own capability. When A < a, it represents player 2’s under-
confidence about her own capability, or prejudice about the opponent’s capability.
Proposition 1 shows that the impact of the misspecification is represented by the
base misspecification effect times the multiplier. In the team production problem,
the base misspecification effect is written as

− 1
M22

 QxiA︸︷︷︸
direct effect

+
∂θ2

∂A
Qxiθ︸      ︷︷      ︸

indirect effect

 . (11)

The first term in the brackets is the direct effect of player 2’s bias A on the marginal
productivity, and the second term is the indirect effect through the steady-state
belief θ2. As is clear from this formula, the sign of the base misspecification
effect crucially depends on the signs of Qxia and Qxiθ . In what follows, we assume
Qxia ≤ 0 and Qxiθ > 0, which requires that the marginal return Qxi be negatively
correlated with the capability a, and positively correlated with the fundamental
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θ .13 The same assumption is imposed in Heidhues, Kőszegi, and Strack (2018), so
by focusing on this case, we can illustrate what is new in our multi-agent setup.14

Assume M22 < 0 as usual. Then, by the assumption Qxia ≤ 0, the direct ef-
fect appearing in (11) is non-positive; in the one-shot game with no learning, the
overconfident player’s effort level is lower than in the correctly specified model.
Intuitively, when Qxia ≤ 0, the overconfident player thinks that the marginal pro-
ductivity is lower than the truth, and thus reduces the effort level.

Also, since Qxiθ > 0 and ∂θ2
∂A =−Qa

Qθ
< 0, the indirect learning effect in (11) is

negative. This implies that in the long run, the overconfident player’s effort level
is even lower than in the one-shot game. Intuitively, the overconfident player finds
that the outputs are lower than what she thinks, and becomes pessimistic about θ

over time, which lowers her effort level. This effect is exactly the self-defeating
property discussed in Heidhues, Kőszegi, and Strack (2018), which states that an
ability to adjust an action depending on an updated belief distorts the action more.

A difference from Heidhues, Kőszegi, and Strack (2018) is that this self-
defeating effect is further amplified by the multiplier 1

1−BR′1BR′2
> 1 in our multi-

player setup. Intuitively, if the overconfident player becomes pessimistic about θ

and reduces the effort level, then the opponent best-respond to it; she increases
the effort if Qx1x2 < 0, and decreases the effort if Qx1x2 > 0. This influences the
overconfident player’s optimal action, and in both cases, the overconfident player

13With this assumption, when A > a, the monotonicity condition stated in Proposition 5 is
satisfied, so both the actions and the beliefs indeed converge to a steady state. When A < a, the
monotonicity condition fails; but if the identifiability condition stated in Section 5 is satisfied, then
the actions and the beliefs converge to a steady state. This identifiability condition is satisfied
when Q is linear in θ .

14It is not difficult to apply the technique here for other cases. For example, suppose that Q < 0
is the damage from drought and agents invest to irrigation which mitigate the damage. Suppose
that Q takes a form of

Q =− 1
θ

(
1

x1 + x2
+

1
a

)
.

In this case, Qxia ≥ 0 and Qxiθ < 0, so both the direct effect and the indirect effect are positive.
Hence, Corollary 3 holds if we reverse all the inequalities. For example, player 2’s overconfidence
about her capability increases her effort in the one-shot game, and she makes even more effort in
the long run.
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reduces the effort level further. Due to this mechanism, the impact of misspecifi-
cation on the steady-state action is larger in our strategic setup than in the single-
agent setup.

Our long-run welfare effects are also different from Heidhues, Kőszegi, and
Strack (2018). When the players’ actions are strategic substitutes (i.e., Qx1x2 < 0),
the opponent increases own effort level in response to the overconfident player’s
action, so the overconfident player can free ride. Indeed, if Qx1x2 < 0, small over-
confidence strictly improves own long-run payoff: the above free-riding effect
outweighs the direct cost of misperception.

When A < a, a misspecified player underestimates the total capability of the
players. For example, the player is underconfident about own capability or has
prejudice about the opponent’s capability. In this case, a player’s small underes-
timation improves social surplus and the opponent’s long-run payoff. Further, if
Qx1x2 < 0, it also improves the misspecified player’s long-run payoff. Intuitively,
given such a pessimistic view, the misspecified player becomes optimistic about
the fundamental θ over time. This learning effect outweighs the direct effect of
underestimation, and the misspecified player contributes more in the long run.

3.2.3 Tournaments

As a third application, we discuss a standard tournament model based on Lazear
and Rosen (1981). Suppose that there are two players. In each period t, each
player i chooses an effort level xi and observes a stochastic output y∈{w, l}, where
y = w means “player 2 wins” and y = l means “player 1 wins.” The probability
of y = w (i.e., the probability of player 2 being a winner) is Q(x1,x2,a1,a2,θ),
where ai denotes player i’s capability and θ is an unknown economic state. We
assume that Qx1 < 0, Qx2 > 0, Qa1 < 0, Qa2 > 0, and Qθ > 0; i.e., player i has a
better chance of winning if she exerts more effort and/or has a better skill. These
assumptions are satisfied, for example, if

Q(x1,x2,a1,a2,θ) = θ
x2 +a2

x1 +a1 + x2 +a2
. (12)
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This functional form is commonly used in the literature since Tullock (1980).
The parameter θ represents players’ uncertainty about fairness of the evalua-
tion system: it is a fair contest if θ = 1, but player 1 is favored if θ < 1, and
player 2 is favored if θ > 1.15 Players’ beliefs about this parameter θ changes
over time, depending on the observed output. A winner receives a payoff W =

1, and a loser receives a payoff L = 0. Each agent’s effort cost is c(xi), and
we assume that c′ > 0. Player 1’s payoff is u1(x1,y) = Prob(y = l)− c(x1) =

[1−Q(x1,x2,a1,a2,θ)]− c(x1), while player 2’s payoff is u2(x2,y) = Prob(y =

w)− c(x2) = Q(x1,x2,a1,a2,θ)− c(x2).
Suppose that player 2 has first-order misspecification in that she incorrectly

believes that her capability is A , a2. When A > a2, it represents player 2’s over-
confidence about her own capability or prejudice about the opponent’s capability.
When A < a2, it represents player 2’s underconfidence about her own capability.

This setup is slightly different from the one we have studied so far; we con-
sider the binary signal space Y = {w, l} instead of the continuous signal space.
However, this does not change the steady-state conditions at all, i.e., the con-
ditions (3)-(2) must be satisfied in a steady state in the tournament model with
binary signals. Accordingly, Proposition 1 applies to the tournament model, and
the impact of misspecification is represented by the base misspecification effect
times the multiplier.

Simple algebra shows that the base misspecification effect in this tournament
model is written as

− 1
M22

Qx2A(x∗1,x
∗
2,a1,A,θ2)︸                       ︷︷                       ︸

direct effect

− ∂θ2

∂A
Qx2θ (x∗1,x

∗
2,a1,A,θ2)︸                             ︷︷                             ︸

indirect learning effect

 . (13)

This is exactly the same as the base misspecification effect (11) in the team pro-
duction, so the results in Section 3.2.2 continue to hold. For example, in Tullock-
type tournament (12), we have Qx2A =−2θ

x1+a1
(x1+a1+x2+A)3 < 0 and Qx2θ = x1+a1

(x1+a1+x2+A)2 >

15Another example is Q(x1,x2,a1,a2,θ) = θ + x2+a2
x1+a1+x2+a2

. In this example, it is a fair contest
if θ = 0, but player 1 is favored if θ < 0, and player 2 is favored if θ > 0. All of the following
discussions hold except that Qxiθ = 0 in this example.
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0, so assuming M22 < 0, both the direct effect and the indirect effect in the base
misspecification effect are negative. This means that the overconfident player does
not work hard in the one-shot game, and in the long run, her effort level is even
lower than that. Intuitively, the overconfident player incorrectly believes that the
marginal return of effort is low (Qx2A < 0) and does not work hard in the one-shot
game. On top of that, since she wins less frequently than what she thinks, after
a long time, she becomes pessimistic about θ and incorrectly believes that the
contest is unfair. This learning effect further reduces her effort.

However, this base misspecification effect is reduced by the multiplier effect.
Indeed, in this tournament model, the multiplier is

1
1−BR′1BR′2

=
1

1− M12
M11

M21
M22

=
1

1+
Q2

x1x2
M11M22

≤ 1.

Here the inequality follows from the fact that M11 < 0 and M22 < 0 with small mis-
specification. Note that this inequality is strict whenever Qx1x2 , 0.16 Intuitively,
when the overconfident player 2 reduces the effort due to the base misspecification
effect, the opponent best-responds to it; she increases the effort if Qx1x2 < 0, and
decreases the effort if Qx1x2 > 0. This in turn influences player 2’s optimal action,
and in both cases, she increases the effort; this mitigates the base misspecification
effect.

This result is quite different from that in the team production, where the mul-
tiplier is greater than one and amplifies the base misspecification effect. A crucial
difference is that players in the tournament have conflicting interests about the
output y; player 2 prefers y = w while player 1 prefers y = l. Accordingly we have
sgn(BR′1), sgn(BR′2), which implies that the multiplier is less than one and strate-
gic interaction weakens the impact of misspecification. By contrast, in the team
production, players have a common preference on y, and accordingly we have
sgn(BR′1) = sgn(BR′2). In this case, the multiplier is larger than one, and strate-
gic interaction strengthens the impact of misspecification. The same argument

16For example, in the Tullock-type tournament, we have Qx1x2 = 0 only when x1 = x2 = 0, so
the multiplier is less than one for all parameter A with which xfirst

1 , xfirst
2 .
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applies to a more general setup; in a common interest game, we should expect a
larger deviation of long-run actions from a correctly specified model than that in
the single-agent model.

4 Higher-Order Misspecification

This section analyzes higher-order misspecification. Section 4.1 covers second-
order misspecification where a player has an incorrect view about the opponent’s
view. Section 4.2 covers double misspecification. It is a combination of first-
and second-order misspecification: either one or both players has an incorrect
view about the physical environment and believes that the opponent shares the
same view. Section 4.3 focuses on the case in which a player’s misspecification is
small and derives a simple characterization. Section 4.4 investigates applications
in Cournot duopoly and team production with higher-order misspecification.

4.1 Second-Order Misspecification

In the previous subsection, we consider the situation in which a player has an
incorrect view about the physical environment, but correctly understands what
the opponent thinks about the physical environment. However, economic agents
often have various forms of bias about what the opponent thinks. For example,
Madarász (2012) and Gagnon-Bartsch (2016) study the cases in which a player
misperceives the other players’ knowledge/preference, which can be represented
by a in our model. Players may also misperceive other players’ depth of reasoning
(see Eyster (2019) for an extensive review).

In this subsection, we consider a long-run impact of a player’s bias about
the opponent’s view about the world. We assume that player 2 has second-order
misspecification, in that she correctly understands the physical environment, but
has an incorrect view about the opponent’s view about a.17 Formally, we consider

17As evidence from laboratory experiments, subjects often systematically mispredict other sub-
jects’ preferences and actions (Van Boven, Dunning, and Loewenstein, 2000, for example). Lud-

25



the following information structure:

• Both players believe that for each parameter θ , the signal y is given by
y = Q(x1,x2,a,θ)+ ε .

• Player 2 (incorrectly) believes that it is common knowledge that “for each
parameter θ , player 1 believes that the signal y is given by y=Q(x1,x2,A,θ)+
ε and player 2 believes that the signal y is given by y = Q(x1,x2,a,θ)+ ε ,”
where A , a.

• Player 1 knows player 2’s information structure above.

Intuitively, this is the case in which player 2 has prejudice, in the sense that she in-
correctly believes that she has better information than the opponent does. Player 1
is unbiased, because she knows both the physical environment and the opponent’s
information.

In this setup, player 2 faces inferential naivety. She believes that the opponent
takes an action based on a misspecified model, so she makes an incorrect predic-
tion about the opponent’s play. It turns out that this inferential naivety influences
player 2’s action in two ways. First, player 2 best-responds to this incorrectly
predicted action of the opponent. Second, player 2 interprets an observed signal
conditional on the incorrectly predicted action, which leads to misguided learning.

Assume that players are myopic so that they maximize the expected stage-
game payoffs each period. To characterize equilibrium actions when player 2
has second-order misspecification, it is useful to introduce hypothetical player 1
who incorrectly believes that the true parameter is A , a. Player 2 believes that
the opponent is this hypothetical player 1, so each period, she chooses a Nash
equilibrium action against this hypothetical player. The true player 1 correctly
understands player 2’s reasoning, and best responds to player 2’s action.

Formally, let (µ̂1, x̂t) denote the action and the belief of the hypothetical player,
and let x = (x1,x2, x̂1) denote an action profile in the three-player game. The

wig and Nafziger (2011) report that most subjects in their experiments are not aware of or under-
estimate overconfidence of other subjects.
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hypothetical player 1’s expected stage-game payoff given θ is

Û1(x,θ ,A) = E[u1(x̂1,Q(x̂1,x2,A,θ)+ ε)],

because she thinks that the parameter is A , a. Player 2’s expected stage-game
payoff is

U2(x,θ) = E[u2(x2,Q(x̂1,x2,a,θ)+ ε)],

because she thinks that the opponent is the hypothetical player who chooses x̂1.
Player 1’s subjective expected stage-game payoff is

U1(x,θ) = E[u1(x1,Q(x1,x2,a,θ)+ ε)].

Using these notations, the equilibrium strategy in the infinite-horizon game is
described as follows. In period one, all players have the same belief µ1

1 = µ1
2 =

µ̂1
1 = µ . So they play a Nash equilibrium (x1

1,x
1
2, x̂

1
1), which solves the first-order

conditions ∂E[U1(x,θ)|µ]
∂x1

= 0, ∂E[U2(x,θ)|µ]
∂x2

= 0, and ∂E[Û1(x,θ)|µ]
∂ x̂1

= 0. At the end of
period one, players observe a public signal y1 = Q(x1

1,x
1
2,a,θ

∗)+ ε , and updates
the posterior beliefs using Bayes’ rule. So each player’s belief in period two is

µ
2
1 (θ) =

µ1
1 (θ) f (y−Q(x1

1,x
1
2,a,θ))∫

Θ
µ1

1 (θ̃) f (y−Q(x1
1,x

1
2,a, θ̃))dθ̃

,

µ
2
2 (θ) =

µ1
2 (θ) f (y−Q(x̂1

1,x
1
2,a,θ))∫

Θ
µ1

2 (θ̃) f (y−Q(x̂1
1,x

1
2,a, θ̃))dθ̃

,

µ̂
2
1 (θ) =

µ̂1
1 (θ) f (y−Q(x̂1

1,x
1
2,A,θ))∫

Θ
µ̂1

1 (θ̃) f (y−Q(x̂1
1,x

1
2,A, θ̃))dθ̃

.

As is clear from this formula, while player 2 correctly knows the parameter a,
her posterior µ2

2 differs from player 1’s posterior µ2
1 because she uses Bayes’ rule

based on the wrong prediction x̂1
1 , x1

1 about player 1’s action. Since actions are
not observable, on the equilibrium path, the beliefs (µ2

2 , µ̂
2
2 ) are common knowl-

edge between player 2 and the hypothetical player 1. Also player 1 knows the be-
lief profile µ2 = (µ2

1 ,µ
2
2 , µ̂

2
1 ). So in period two, players play a Nash equilibrium

given this belief profile µ2 = (µ2
1 ,µ

2
2 , µ̂

2
1 ). Likewise, in any subsequent period
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t ≥ 3, players play a Nash equilibrium given the belief profile µ t = (µ t
1,µ

t
2, µ̂

t
1),

where µ t is computed by Bayes’ rule.
As will be shown in Section 5, under a mild sufficient condition, players’

beliefs and actions almost surely converge to a steady state (x∗1,x
∗
2, x̂
∗
1,µ
∗
1 ,µ

∗
2 , µ̂

∗
1 )

which satisfies the following conditions:

x∗1 ∈ argmax
x1

U1(x1,x∗2, x̂
∗
1,θ
∗), (14)

x∗2 ∈ argmax
x2

U2(x2,x∗1, x̂
∗
1,θ2), (15)

x̂∗1 ∈ argmax
x̂1

Û1(x̂1,x∗1,x
∗
2, θ̂1), (16)

µ
∗
1 = 1θ∗, (17)

µ
∗
2 = 1θ2 s.t. Q(x̂∗1,x

∗
2,a,θ2) = Q(x∗1,x

∗
2,a,θ

∗), (18)

µ̂
∗
1 = 1

θ̂1
s.t. Q(x̂∗1,x

∗
2,A, θ̂1) = Q(x∗1,x

∗
2,a,θ

∗). (19)

The first three conditions (14), (15), and (16) are the incentive compatibility condi-
tions, which require that each player maximize her own payoff given some beliefs.
The next three conditions (17), (18), and (19) require that these beliefs satisfy con-
sistency, in that each (actual and hypothetical) player’s belief is concentrated on
a state with which each player’s subjective signal distribution coincides with the
objective distribution.

As in the case with first-order misspecification, we assume that for each action
profile x, there is a unique state which solves the consistency condition (18), and
we denote it by θ2(x,A). This θ2(x,A) can be interpreted as player 2’s long-run
belief when players choose the same action x each period. Similarly, we assume
that for each x, there is a unique state which solves (19), and we denote it by
θ̂1(x,A). Player 1’s long-run belief is defined as θ1(x,A) = θ ∗ for all x.

We will characterize how player 2’s misspecification influences the steady-
state actions, and to do so, the following notation is useful. For each i, j = 1,2,3
(possibly i = j), let

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,A)

+
∂θi(x,A)

∂x j
· ∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

.
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denote the impact of player j’s action on player i’s marginal utility in the long
run. (Here player 3 refers to the hypothetical player, and x3, U3, and θ3 are x̂1, Û1,
and θ̂1, respectively.) The first term is the direct effect, and the second term is the
indirect effect through the steady-state belief θi. Then define the slope of player
i’s asymptotic best response curve with respect to player j’s action as

BR′i j =−
Mi j

Mii
.

Intuitively, BR′i j measures how player j’s action influences player i’s optimal
long-run action, while the action of l , i, j being fixed. The slope of player 1’s
asymptotic best response curve, BR′12 and BR′13, coincides with that of the standard
best response curve. This is so because she can learn the true state regardless of
the opponents’ play, and the indirect effects in M11, M12, and M13 are zero. In
particular, BR′13 = 0, because player 3 is not player 1’s opponent and the direct
effect in M13 is zero. On the other hand, the slopes of the other players’ asymptotic
best response curves are different from those of the standard best response, due
to the indirect effect. For example, BR′21 and BR′31 need not be zero, even though
players 2 and 3 do not think that player 1 is the opponent. Importantly, the indirect
effects in M21, M23, M31, and M33 do not disappear even in the limit as A→ a.
This is so because there is inferential naivety, and θ2(x,a) and θ̂1(x,a) can be
different from θ ∗ if x1 , x̂1. This is in a sharp contrast with the case with first-order
misspecification, where all the indirect effects disappear in the limit as A→ a.

Let

M3A :=
∂ 2Û1(x,θ ,A)

∂ x̂1∂A

∣∣∣∣
θ=θ̂1(x,A)

+
∂ 2Û1(x,θ ,A)

∂ x̂1∂θ

∣∣∣∣
θ=θ̂1(x,A)

∂ θ̂1(x,A)
∂A

denote the impact of the hypothetical player’s bias A on her own marginal utility.
Now we are ready to state the result:

Definition 2. A steady state x∗ is regular if the following conditions are satis-
fied in x∗: (i) the steady-state action x∗i is uniquely optimal, (ii) x∗, θ2(x∗,A),
and θ̂1(x∗,A) are interior points, (iii) BR′23BR′32 , 1 and BR′12BR′21 +BR′23BR′32 +
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BR′12BR′23BR′31 , 1, and (iv) Mii < 0 for each i.18

Proposition 2 (Steady State under Second-Order Misspecification). Let x∗ be a
regular steady state for some parameter A∗.19 Then there is an open neighborhood
of A∗ such that for any value A in this neighborhood, there is a regular steady state
x∗ which is continuous with respect to A, and we have

∂x∗2
∂A

=−M3A

M33

(
BR′23

1−BR′23BR′32

)(
1

1−BR′12NE ′2

)
∂x∗1
∂A

=
∂x∗2
∂A
·BR′12

where

NE ′2 =
BR′21 +BR′23BR′31

1−BR′23BR′32
. (20)

The first equation in this proposition describes how player 2’s second-order
misspecification influences her own steady-state action x2, and the second equa-
tion states that the rational player 1 simply best-responds to player 2’s play. To
interpret the first equation, recall that the parameter A represents the first-order
belief (about the physical environment) of the hypothetical player. So when this
parameter A changes, it influences the hypothetical player’s optimal action x̂1 di-
rectly and indirectly through the steady-state belief. The first term −M3A

M33
in the

equation measures this impact, holding the other players’ actions fixed. Note that

18As in the case with first-order misspecification, the regularity conditions (i) and (ii) ensure
that the steady state is continuous with respect to the parameter A and the first-order condition for
the incentive compatibility is satisfied there. The condition (iii) is needed for the multiplier effect
to be well-defined. The condition (iv) ensures that the base misspecification effect and the slope
of the asymptotic best response curve are well-defined. This condition is also useful when we
interpret the base misspecification effect.

19Under the following additional assumption, we can also show BR′23(BR′32+BR′12BR′31)

1−BR′12BR′21
< 1. Specif-

ically, given x̂1, let NE(x̂1) denote the set of (x1,x2) satisfying (18), (14), and (15) for some θ2.
Also, given (x1,x2), let BR3(x1,x2) denote the set of x̂1 satisfying (19) and (16) for some , θ̂1. If
NE and BR3 are continuous functions (rather than correspondences) and if a steady state is unique,
then BR′23(BR′32+BR′12BR′31)

1−BR′12BR′21
< 1. A proof is available upon request.
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this term is very similar to the base misspecification effect appearing in Proposi-
tion 1.

The second term in the equation, BR′23
1−BR′23BR′32

, measures how the hypothetical
player’s action x̂1 influences player 2’s action, holding player 1’s action being
fixed. When the hypothetical player’s action x̂1 changes by −M3A

M33
, player 2 best-

responds to it, and her steady-state belief is affected. Accordingly, player 2’s
optimal long-run action changes by −M3A

M33
BR′23. Also, holding player 1’s action

fixed, this effect is amplified by the strategic interaction between player 2 and
the hypothetical player; a change in player 2’s action influences the hypothetical
player’s action and belief, which in turn influences player 2’s action and belief,
and so on. As in the case with first-order misspecification, this effect is repre-
sented by the multiplier 1

1−BR′23BR′23
. So in total, when player 1’s action is fixed,

player 2’s second-order misspecification influences her own steady-state action by
−M3A

M33

(
BR′23

1−BR′23BR′32

)
.

The last term in the equation, 1
1−BR′12NE ′2

, measures how player 1’s strategic
play amplifies/reduces the impact of misspecification. To see what it means, it is
useful to define player 2’s asymptotic Nash equilibrium correspondence as

NE2(x1) = {x2|∃x̂1 satisfying (15), (16), (18), (19)}

for each x1. Intuitively, NE2(x1) denotes player 2’s steady-state action, when
player 1 chooses the same action x1 every period while the other players learn
the state and adjust actions. Then the term NE ′2 appearing in the proposition can
be interpreted as the slope of this Nash equilibrium correspondence NE2, i.e.,
it measures how a marginal change in player 1’s (constant) action x1 influences
player 2’s steady-state action.20

20To see that NE ′2 =
BR′21+BR′23BR′31

1−BR′23BR′32
is the slope of NE2, suppose that the steady-state action

(x2, x̂1) is an interior solution for every x1. Then the following first-order conditions must be
satisfied in any steady state:

∂U2

∂x2

∣∣∣∣
θ2=θ2(x,A)

= 0,
∂Û1

∂ x̂1

∣∣∣∣
θ̂1=θ̂1(x,A)

= 0.

Applying the implicit function theorem to this system of equations (here we regard (x2, x̂1) as a
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With this interpretation in mind, suppose that player 2’s action changes by
∆. This influences player 1’s optimal action by BR′12∆, which in turn influences
player 2’s (and the hypothetical player’s) steady-state beliefs and actions. This
feedback effect on player 2’s action is BR′12NE ′2∆. This process continues in-
finitely, which results in the multiplier effect 1

1−BR′12NE ′2
.21

While NE ′2 is somewhat similar to BR′2 appearing in the case of first-order
misspecification, there are two important differences. First, in NE ′2, we consider
the case in which both player 2 and the hypothetical player adjust actions (and
play a Nash equilibrium) every period. In BR′2 (and in BR′21), we consider the
case in which only player 2 adjusts actions. Second, since player 2 does not
think that player 1 is the opponent in the case of second-order misspecification,
NE ′2 =

BR′21+BR′23BR′31
1−BR′23BR′32

involves only the indirect effect; the first term BR′21 in the
numerator represents how player 1’s action influences player 2’s action through
the steady-state belief, and the second term BR′23BR′31 represents how player 1’s
action influences player 2’s action through the hypothetical player’s action. These
effects are amplified by the strategic interaction between player 2 and the hypo-
thetical player, and hence we have 1−BR′23BR′32 in the denominator.

4.2 Double Misspecification

In many economic situations of our interest, a biased player naively thinks that her
own view about the world is absolutely correct and the opponent share the same
view about the world. This happens, for example, when a player is completely
positive about own capability.22 Alternatively, a player may be unaware of or

function depending on the parameter x1), we indeed have ∂x2
∂x1

=
BR′21+BR′23BR′31

1−BR′23BR′32
.

21In this argument, we implicitly use the fact that player 1’s optimal action is not affected by
the hypothetical player’s action.

22For example, Camerer and Lovallo (1999) provide lab-experimental evidence of overconfi-
dence in strategic entry settings, and Benoı̂t, Dubra, and Moore (2015) provide lab-experimental
evidence of overconfidence which excludes the possibility of rational Bayesian reasoning. See
Kőszegi (2014) and Grubb (2015) for theoretical studies applying overconfidence in strategic set-
tings.
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underestimate a particular aspect of the environment.23

In our framework, such a situation can be described by considering a doubly
misspecified agent, who has both the first-order misspecification (she incorrectly
believes that the true parameter is A , a) and the second-order misspecification
(she incorrectly believes that the opponent thinks that the true parameter is A). We
first consider the case in which only player 2 is misspecified. Then we consider
the case in which both players are misspecified.

4.2.1 One-Sided Double Misspecification

We consider the case in which only player 2 is misspecified. Specifically, we
assume that:

• Player 2 (incorrectly) believes that for each parameter θ , the signal y is
given by y = Q(x1,x2,A,θ)+ ε , where A , a.

• Player 2 (incorrectly) believes that it is common knowledge that “the signal
y is given by y = Q(x1,x2,A,θ)+ ε .”

• Player 1 knows player 2’s information structure above.

With this information structure, player 2 has an incorrect view about the parameter
a, and in addition, she has inferential naivety in that she incorrectly believes that
player 1 takes an action based on a misspecified model. Player 1 is unbiased,
in the sense that she correctly understands the true parameter a and she knows
player 2’s information structure (which allows her to make a correct prediction
about player 2’s action).

Assume again that the agents are myopic, so that they maximize the expected
stage-game payoff each period. As in the case of second-order misspecification,
we consider a hypothetical player 1 who thinks that it is common knowledge that

23For example, consumers often systematically ignore or underestimate a specific type of
fee/risk; see Heidhues and Kőszegi (2018) for theoretical applications and evidence.
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the true parameter is A, a. Let x=(x1,x2, x̂1) denote an action profile in the three-
player game, and let Û1(x,θ ,A) denote the hypothetical player’s stage-game pay-
off, U2(x,θ ,A) denote player 2’s stage-game payoff, and U1(x,θ) denote player
1’s stage-game payoff. Note that player 2 and the hypothetical player evaluates
the expected payoff assuming that the signal is given by y = Q(x̂1,x2,A,θ)+ ε .
The equilibrium strategy in the infinite-horizon game is very similar to that in the
case of the second-order misspecification; we only need to replace the parameter
a which appears in player 2’s expected payoff and Bayes’ formula with the biased
parameter A.

In this environment, the following conditions must be satisfied in a steady
state:

x∗1 ∈ argmax
x1

U1(x1,x∗2,a,θ
∗), (21)

x∗2 ∈ argmax
x2

U2(x̂∗1,x2,A,θ2), (22)

x̂∗1 ∈ argmax
x̂1

Û1(x̂1,x∗2,A,θ2), (23)

µ
∗
1 = 1θ∗, (24)

µ
∗
2 = µ̂

∗
1 = 1θ2 s.t. Q(x̂∗1,x

∗
2,A,θ2) = Q(x∗1,x

∗
2,a,θ

∗). (25)

The first three conditions (21), (22), and (23) are incentive compatibility condi-
tions, which require that each player maximizes her payoff given some beliefs.
The next two conditions (24) and (25) assert that these beliefs satisfy consistency,
in that each player’s belief is concentrated on a state under which each player’s
subjective signal distribution coincides with the objective distribution. Note that
the hypothetical player’s belief is exactly the same as player 2’s belief, as they
both believe that it is common knowledge that the true parameter is A. We assume
that for each action profile x and parameter A, there is a unique state θ2(x,A)
which solves (25). Intuitively, this θ2(x,A) is player 2’s long-run belief when
players choose the same action profile x every period. Player 1’s long-run belief
is θ1(x,A) = θ ∗.

Define the slope of player i’s asymptotic best response curve with respect to
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player j’s action as

BR′i j :=−
Mi j

Mii

where for each i, j = 1,2,3 (possibly i = j),

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,A)

+
∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂x j

.

measures the impact of player j’s action on player i’s marginal utility in the long
run. Here again, player 3 refers to the hypothetical player, and her action, belief,
and utility are denoted by x3, θ3, and U3 rather than x̂1, θ̂1, and Û1.

For each i = 2,3, let

MiA :=
∂ 2Ui(x,θ ,A)

∂xi∂A

∣∣∣∣
θ=θi(x,A)

+
∂ 2Ui(x,θ ,A)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂A

denote the impact of player i’s first-order misspecification on her marginal utility.
The following proposition characterizes how player 2’s double misspecification
influences the steady-state actions.

Definition 3. A steady state x∗ is regular if the following conditions are satisfied
in x∗: (i) the steady-state action x∗i is uniquely optimal, (ii) x∗ and θ2(x∗,A) =
θ̂1(x∗,A) are interior points, (iii) BR′23BR′32 , 1 and BR′12BR′21 + BR′23BR′32 +

BR′12BR′23BR′31 , 1, and (iv) Mii < 0 for each i.

Proposition 3 (Steady State under One-Sided Double Misspecification). Let x∗ be
a regular steady state for some parameter A∗. Then there is an open neighborhood
of A∗ such that for any value A in this neighborhood, there is a regular steady state
x∗ which is continuous with respect to A, and we have

∂x∗2
∂A

=−
(

M2A

M22
+

M3A

M33
BR′23

)(
1

1−BR′23BR′32

)(
1

1−BR′12NE ′2

)
,

∂x∗1
∂A

=
∂x∗2
∂A
·BR′12

where NE ′2 is defined by (20).
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The first equation in this proposition characterizes how player 2’s double mis-
specification influences her own steady-state action. This is very similar to the
first equation in Proposition 2. The only difference is that here player 2 has first-
order misspecification about the parameter a, which influences her optimal action
by the base misspecification effect −M2A

M22
. All other terms are the same as those

in Proposition 2. The second equation in the proposition simply states that the
rational player 1 best-responds to player 2’s action.

4.2.2 Two-Sided Double Misspecification

Now consider the case in which both players are misspecified. We assume:

• Each player i (incorrectly) believes that for each parameter θ , the signal y
is given by y = Q(x1,x2,Ai,θ)+ ε , where Ai , a.

• Each player i (incorrectly) believes that it is common knowledge that “the
signal y is given by y = Q(x1,x2,Ai,θ)+ ε .”

We allow A1 , A2, so the dufferent players may have different levels of misspeci-
fication. Note that even when Ai = a, player i may be biased, in the sense that she
may not know the opponent’s bias about the technology a. That is, when Ai = a,
player i believes that the opponent believes that the technology is a, but in reality,
the opponent may believe A j , a.

For find an equilibrium in this environment, it is useful to consider two hypo-
thetical players. Hypothetical player 1 is player 1 who thinks that it is common
knowledge that the true technology is A2. Hypothetical player 2 is player 2 who
thinks that it is common knowledge that the true technology is A1. Note that player
1 and hypothetical player 2 think that they play the game each other, and the same
is for player 2 and hypothetical player 1. Let x̂i, µ̂i, and Ûi denote hypothetical
player i’s action and belief.

Then a steady state in this environment satisfies the consistency and incentive-
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compatibility conditions:

x∗i ∈ argmax
xi

Ui(xi, x̂∗j ,Ai,θi) ∀i, j , i (26)

x̂∗i ∈ argmax
x̂i

Ûi(x̂i,x∗j ,Ai,θ j) ∀i, j , i, (27)

µ
∗
1 = µ̂

∗
2 = 1θ1 s.t. Q(x∗1, x̂

∗
2,A1,θ1) = Q(x∗1,x

∗
2,a,θ

∗) (28)

µ
∗
2 = µ̂

∗
1 = 1θ2 s.t. Q(x̂∗1,x

∗
2,A2,θ2) = Q(x∗1,x

∗
2,a,θ

∗). (29)

We assume that for each action profile x and parameter Ai, there is a unique state
θi(x,Ai) = θ̂ j(x,Ai) which solves the consistency condition Q(xi, x̂−i,Ai,θi) =

Q(x1,x2,a,θ ∗). This is player i’s (and the hypothetical player j’s) long-run be-
lief when the same action profile x is chosen every period.

Define the slope of player i’s asymptotic best response curve with respect to
player j’s action as

BR′i j :=−
Mi j

Mii

where for each i, j = 1,2,3,4 (possibly i = j),

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,A)

+
∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂x j

.

measures the impact of player j’s action on player i’s marginal utility in the long
run. Here, players 3 and 4 refer to the hypothetical players 1 and 2, respectively.
Their actions, beliefs, and utilities are denoted by x3, x4, θ3, θ4, U3, and U4, rather
than x̂1, x̂2, θ̂1, θ̂2, Û1, and Û2. Note that M13 = M24 = M34 = M43 = 0, and thus
BR′13 = BR′24 = BR′34 = BR′43 = 0. All other Mi j involve indirect effects.

For each i = 2,3, let

MiA :=
∂ 2Ui(x,θ ,A)

∂xi∂A

∣∣∣∣
θ=θi(x,A)

+
∂ 2Ui(x,θ ,A)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂A

denote the impact of player i’s first-order misspecification on her marginal utility.
The following proposition characterizes how player 2’s double misspecification
influences the steady-state actions.
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Definition 4. A steady state x∗ is regular if the following conditions are satisfied
in x∗: (i) the steady-state action x∗i is uniquely optimal, (ii) x∗ and θ2(x∗,A) =
θ̂1(x∗,A) are interior points, (iii) BR′14BR′41 , 1, BR′23BR′32 , 1, and BR′14BR′41 +

BR′23BR′32+(BR′21+BR′23BR′31)(BR′12+BR′14BR′42) , 1, and (iv) Mii < 0 for each
i.

Proposition 4 (Steady State under Two-Sided Double Misspecification). Let x∗

be a regular steady state for some parameter A∗ = (A∗1,A
∗
2). Then there is an open

neighborhood of A∗2 such that for any value A2 in this neighborhood, there is a
regular steady state x∗ which is continuous with respect to A2, and we have

∂x∗2
∂A2

=−
(

M2A

M22
+BR′23

M3A

M33

)(
1

1−BR′23BR′32

)(
1

1−NE ′1NE ′2

)
,

∂x∗1
∂A2

=
∂x∗2
∂A2
·NE ′1

where NE ′2 is defined by (20) and NE ′1 is similarly defined as

NE ′1 =
BR′12 +BR′14BR′42

1−BR′14BR′41
.

The equations in this proposition are very similar to those in Proposition 3,
and the only difference is that the term BR′12 in Proposition 3 is replaced with
NE ′1. Recall that under one-sided double misspecification, player 1 is rational
and best responds to player 2’s play. The term BR′12 in Proposition 3 quantifies
this effect. On the other hand, under two-sided double misspecification, player
1 is also misspecified, and when player 2’s action changes, it influences player
1’s steady-state action in a more complicated way. The term NE ′1 quantifies this
effect. More precisely, NE ′1 can be regarded as the slope of player 1’s asymptotic
Nash equilibrium correspondence defined as

NE1(x2) = {x1|∃x̂2 satisfying (26) for i = 1, (27) for i = 2, (28)}.

That is, NE ′1 considers the case in which player 2 chooses the same action x2 every
period, and measures how a marginal change in x2 influences player 1’s steady-
state action. Just like NE ′2, this NE ′1 involves only the indirect effect, because
player 1 does not think that player 2 is the opponent.

38



4.3 Small Misspecification: Limit as A→ a

So far we have characterized how a player’s bias influences actions for a general
misspecified parameter A. In this subsection, we will consider the case in which
player 2 has small misspecification, in the sense that the misspecified parameter
A is close to the true value a. We will show that in this special case, the multipli-
ers derived in Propositions 1-4 can be replaced with much simpler forms, which
allows us to make a clean comparison of the impacts of first-order, second-order,
and double misspecification.

Let xfirst, xsecond, xdouble, and xcorrect denote the steady-state action profile with
first-order misspecification, second-order misspecification, one-sided double mis-
specification, and the correctly specified model, respectively. Also, let xdouble2 de-
note the steady-state action profile with two-sided double misspecification when
A1 = a and A2 = A; i.e., player 1 knows that the true technology is a, but does not
recognize player 2’s bias A. A game is symmetric if X1 = X2, u1(x1,y) = u2(x2,y)
for all x1 and x2 with x1 = x2, and Q(x1,x2,a,θ) = Q(x2,x1,a,θ).

Proposition 5. Suppose that in each misspecification, there is a unique steady
state at A = a and it is regular. Then we have the following result:

(i) At A = a, xfirst
1 = xsecond

1 = x̂second
1 = xdouble

1 = x̂double
1 = xdouble2

1 = x̂double2
1 =

xcorrect
1 and xfirst

2 = xsecond
2 = xdouble

2 = xdouble2
2 = x̂double2

2 = xcorrect
2 .

(ii) At A = a,

∂xdouble
2
∂A

=
∂xfirst

2
∂A

+
∂xsecond

2
∂A

.

(iii) Assume in addition that the game is symmetric and that xcorrect
1 = xcorrect

2 .
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Then at A = a,

∂xsecond
2
∂A

=−
Ui j−L
Uii−L

·
∂xfirst

2
∂A

,

∂xdouble
2
∂A

=
∂xfirst

2
∂A

+
∂xsecond

2
∂A

=

(
1−

Ui j−L
Uii−L

)
∂xfirst

2
∂A

,

∂xdouble2
2
∂A

=
(Uii−L)(Uii +Ui j−L)

Uii(Uii +Ui j−2L)
∂xdouble

2
∂A

,

∂xdouble2
1
∂A

=− L
Uii

(
1−

Ui j

Uii

)
∂xdouble2

2
∂A

,

where Uii =
∂ 2U1(xcorrect,θ∗)

∂x2
1

, Ui j =
∂ 2U1(xcorrect,θ∗)

∂x1∂x2
, and L = ∂ θ̂1

∂x1

Û1
∂ x̂1∂θ

=
Qx1
Qθ
·

∂ 2U1(xcorrect,θ)
∂x1∂θ

.

Part (i) shows that if there is no misspecification in that A = a, the steady state
actions are the same for all cases. Part (ii) shows that when misspecification is
small, the impact of one-sided double misspecification can be decomposed into
that of first-order misspecification and that of second-order misspecification. This
result essentially follows from the fact that double misspecification is a combina-
tion of first-order misspecification and second-order misspecification.

Part (iii) considers a symmetric game, and compares the impact of various
misspecification, and all these equations follow from simple algebra. The term L
measures the indirect learning effect on the hypothetical player’s marginal utility,
when the real player (secretly) increases the action.

4.4 Higher-Order Misspecification: Applications

To highlight the effects of higher-order misspecification, this subsection inves-
tigates applications to Cournot duopoly and team production, with higher-order
misspecification. We also discuss an application to gender bias, with a focus on
how a teacher’s bias can be endogenously transmitted to a student under two-sided
double misspecification.
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4.4.1 Cournot duopoly

Consider the Cournot duopoly model introduced in Section 3.2.1. Let xcorrect
i and

πcorrect denote firm i’s steady-state action and payoff in the correctly specified
model. The following corollary is an immediate consequence of Proposition 5.
It shows that the long-run impact of misspecification crucially depends on the
parameter Qxθ

Qθ
, which measures the normalized impact of the state θ on the de-

mand slope. We assume that steady state is unique in each misspecification at
a = A1 = A2.24

Corollary 2. Suppose that in each misspecification, there is a unique steady state
at A = a and it is regular.25 Suppose also that the base misspecification effect (10)
is positive at A = a, i.e., Qxθ

Qθ
< QxA

QA
in the unique Nash equilibrium in the correctly

specified model with known θ ∗. Then, the following results hold.

(i) Under first-order misspecification and one-sided double misspecification,
we have ∂x1

∂A < 0, ∂x2
∂A > 0, ∂ (x1+x2)

∂A > 0, ∂π1
∂A < 0, ∂π2

∂A > 0, and ∂ (π1+π2)
∂A < 0

at A = a both in the one-shot game with known θ ∗ and in the long-run
steady state.

(ii) Under second-order misspecification, all inequalities in (i) are reversed in
the one-shot game with known θ ∗. In the long-run steady state, all inequal-
ities in (i) remain true if Qxθ

Qθ
> Qxx

Qx
, but are reversed if Qxθ

Qθ
< Qxx

Qx
.

(iii) Under two-sided double misspecification with A1 = a, there is A2 > A2 such
that for all A2 ∈ (a,A2), we have x1 = xcorrect

1 , x2 > xcorrect
2 , and πi < πcorrect

i

for each i in the one-shot game with known θ ∗. In the long-run steady state,
all inequalities in (i) remain true.

24In Appendix B, we provide a sufficient condition for the unique steady state in each misspec-
ification.

25Regularity in the case of second-order misspecification requires M33 =Uii−L < 0, which is
satisfied if and only if Qxθ

Qθ
< Qxx

Qx
+ 1

x −
c′′

xQx
. Other conditions stated in the definition of regularity

are satisfied for generic parameters.
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If the base misspecification effect is negative (i.e., Qxθ

Qθ
> QxA

QA
), all the inequalities

remain true in the one-shot game with known θ ∗, but are reversed in the long-run
steady state.

Part (ii) of the corollary considers the case with second-order misspecification,
in the sense that firm 2 incorrectly believes that firm 1 is overconfident. If the
base misspecification effect is positive, in the long run, firm 2 incorrectly believes
that firm 1 produces more than in the correctly specified model, i.e., ∂ x̂1

∂A > 0.26

This incorrect prediction has two countervailing forces on firm 2’s action. First,
there is a direct effect, in that firm 2 best-responds to this incorrect prediction and
produces less. Second, firm 2 observes prices higher than the anticipation and
becomes optimistic about the state θ ; this indirect learning effect increases the
incentive to produce. More formally, simple algebra shows that

∂x2

∂A
= BR′23

∂ x̂1

∂A
=−

Ui j−L
Uii

∂ x̂1

∂A
.

In this Cournot model, Ui j = Qx + x2Qxx and L = Qx
Qθ

(Qθ + xiQxθ ). Plugging this
into the above equation,

∂x2

∂A
=− 1

Uii


direct effect︷︸︸︷

Qx −

indirect effect︷   ︸︸   ︷
Qx

Qθ

Qθ︸                        ︷︷                        ︸
on the price level

+x2


direct effect︷︸︸︷

Qxx −

indirect effect︷    ︸︸    ︷
Qx

Qθ

Qxθ︸                        ︷︷                        ︸
on the slope




∂ x̂1

∂A
.

Note that the first two terms in the curly brackets cancel out; this happens because
firm 2 correctly predicts the price in the steady state. Hence, we have

∂x2

∂A
=− x2

Uii

(
Qxx−

Qx

Qθ

Qxθ

)
∂ x̂1

∂A
.

That is, firm 2’s steady-state action is determined by its subjective view about the
slope in the steady state. As stated in the corollary, if Qxx− Qx

Qθ
Qxiθ > 0 so that

firm 2 is optimistic about the slope, then it produces more than in the correctly

26Formally, this follows from Proposition 5 (iii), Uii < 0, Uii−L < 0, and the base misspecifi-
cation effect being positive.
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specified model, i.e., ∂x2
∂A > 0. On the other hand, firm 2 produces less if it is

pessimistic about the slope.
Part (i) of the corollary considers the case with one-sided double misspecifi-

cation, and shows that its impact on the steady state is similar to that of first-order
mispecification. That is, when firm 2 is overconfident and the opponent knows
it, firm 2’s higher-order misspecification does not have a substantial impact on
the steady state. To see the intuition, suppose first that Qxx− Qx

Qθ
Qxiθ > 0. In

this case, both first-order misspecification and second-order misspecification in-
crease firm 2’s production. Since double-misspecification is a combination of
these two misspecifications (formally, see Proposition 5(ii)), it is immediate that
firm 2 produces even more under one-sided double misspecification. Suppose
next that Qxx− Qx

Qθ
Qxiθ < 0. In this case, second-order misspecification has an

opposite impact on firm 2’s production, that is, firm 2 produces less under second-
order misspecification. However, as we show in the proof, this negative impact
(of second-order misspecification) is outweighed by the positive impact of first-
order misspecification. So double misspecification increases firm 2’s production,
although its impact is smaller than that of first-order misspecification.

Part (iii) of the corollary considers the case with two-sided double misspeci-
fication, where firm 1 is not aware of firm 2’s overconfidence. In this case, firm
2’s overconfidence hurts both firms in the short-run. This is because the strategic
effect does not exist in this environment; although the overconfident firm 2 pro-
duces more, firm 1 is not aware of it and chooses the Nash equilibrium action in
the correctly-specified model. So firm 2’s overconfidence simply makes her action
suboptimal, just as any bias does in the single-agent problem.

However, in the long run, firm 2’s overconfidence can still improve the equi-
librium payoff. A key is the learning effect on firm 1: Since firm 1 is not aware
of overproduction by the opponent, it observes a market price lower than the an-
ticipation. Accordingly, firm 1 becomes pessimistic about θ , and in particular
about the demand slope. This means that firm 1 produces less in the long run,
which yields a higher profit to the overconfident firm 2 even in the absence of
the strategic effect. This is an important difference from the case with first-order
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misspecification or one-sided double misspecification, in which the overconfident
firm benefits from the strategic effect. Also, under two-sided double misspeci-
fication, firm 2’s overconfidence may improves the total welfare π1 + π2 if this
learning effect is large enough. As stated in parts (i) and (ii) of Corollary 2, this
cannot happen in first-order misspecification and one-sided double misspecifica-
tion, in which there is no learning effect on firm 1. These results highlight how the
awareness about an opponent’s bias makes qualitative differences in multi-player
learning models.

4.4.2 Team production

In Section 3.2.2, we have focused on team production first-order misspecification.
However, various forms of higher-order misspecifications are relevant in practice.
For example, a player may have second-order misspecification and incorrectly be-
lieves that the opponent has overconfidence, underconfidence, or prejudice. Or,
a player may have double misspecification; she has overconfidence, underconfi-
dence, or prejudice as in the case of first-order misspecification, and on top of
that, she naively thinks that the opponent shares the same view. Using Proposition
5, we can quantify the impact of such misspecification. Again, we assume that
steady state is unique in each misspecification at a = A1 = A2.

Corollary 3. Suppose that in each misspecification, there is a unique steady state
at A = a and it is regular. Let L =

QxiQxiθ
Qθ

> 0 be as in Proposition 5.

(i) Under first-order misspecification and one-sided double misspecification,

(a) If Qx1x2 > 0, then in the one-shot game with known θ ∗, ∂x2
∂A ≤

∂x1
∂A ≤ 0

and ∂π1
∂A ≤

∂π2
∂A ≤ 0 at A = a with strict inequalities if Qxia , 0. In the

long-run steady state, all the inequalities are strict for any Qxia ≤ 0.

(b) If Qx1x2 < 0, then in the one-shot game with known θ ∗, ∂x2
∂A ≤ 0≤ ∂x1

∂A ,
∂ (x1+x2)

∂A ≤ 0, ∂π1
∂A ≤ 0 ≤ ∂π2

∂A , and ∂ (π1+π2)
∂A ≤ 0 at A = a with strict

inequalities if Qxia , 0. In the long-run steady state, all the inequalities
are strict for any Qxia ≤ 0.
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(ii) Under second-order misspecification,

(a) If Qx1x2 > L, then in the one-shot game with known θ ∗, ∂x2
∂A ≤

∂x1
∂A ≤ 0

and ∂π1
∂A ≤

∂π2
∂A ≤ 0 at A = a with strict inequalities if Qxia , 0. In the

long-run steady state, all the inequalities are strict for any Qxia ≤ 0.

(b) If Qx1x2 ∈ (0,L), then in the one-shot game with known θ ∗, ∂x2
∂A ≤

∂x1
∂A ≤

0 and ∂π1
∂A ≤

∂π2
∂A ≤ 0 at A = a with strict inequalities if Qxia , 0. In the

long-run steady state, ∂x2
∂A > ∂x1

∂A > 0 and ∂π1
∂A > ∂π2

∂A > 0 at A = a.

(c) If Qx1x2 < 0, then in the one-shot game with known θ ∗, ∂x1
∂A ≤ 0≤ ∂x2

∂A ,
∂ (x1+x2)

∂A ≥ 0, ∂π2
∂A ≤ 0 ≤ ∂π1

∂A , and ∂ (π1+π2)
∂A ≥ 0 at A = a with strict

inequalities if Qxia , 0. In the long-run steady state, all the inequalities
are strict for any Qxia ≤ 0.

(iii) Under two-sided double misspecification with A1 = a, in the one-shot game
with known θ ∗, there is A2 > a such that for any A2 ∈ (a,A2), x1 = xcorrect

1 ,
x2 ≤ xcorrect

2 , π1 ≤ π2 ≤ πcorrect
i with strict inequalities if Qxia , 0. In the

long-run steady state, ∂xi
∂A < 0 and ∂πi

∂A < 0 at A = a.

Part (i) considers the case in which player 2 is overconfident and player 1
knows it. It shows that the overconfident player reduces the effort, regardless of
whether she knows the opponent’s information or not. This result follows from
the fact that the base misspecification effect is negative. It also shows that player
1 simply best-responds to this player 2’s action; she increases the effort under
strategic substitutes, and reduces the effort under strategic complements. Over-
confidence always decreases the total surplus, and the overconfident player 2 al-
ways obtains a better payoff than the unbiased player 1.

Part (ii) considers the case in which both players know the true parameter
a, but player 2 incorrectly believes that the opponent is overconfident. The result
depends on the parameter Qx1x2 , and notably, when there is weak complementarity,
i.e., Qx1x2 ∈ (0,L), both players work less in the short run, but work harder in the
long run. The intuition is as follows. Due to the bias, player 2 underestimates
player 1’s effort. In the one-shot game, player 2 simply best-responds to it by
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reducing the effort. But in the long run, there is a learning effect; player 2 is
surprised by the actual output being better than the anticipation, and over time,
she becomes optimistic about θ and provides an extra incentive to work hard.
When complementarity is weak, this effect dominates the negative impact in the
one-shot game, so player 2 increases the effort.

Part (iii) considers the case in which player 1 is not aware of player 2’s over-
confidence. An important difference from part (i) is that player 1 reduces the effort
in the long run, regardless of the parameter Qx1x2 . This is due to the learning ef-
fect. Since player 1 overestimates player 2’s effort, she is disappointed by low
output. Hence, over time, she becomes pessimistic about θ and reduces the effort.
In this case, both players reduce the effort, and both players earn a lower long-run
payoff.

4.4.3 Transmission of Bias

There is a long-standing debate on whether the gender gap in math achievement
arises from biological reasons (such as brain functioning) as opposed to culture
and social conditioning. There are recent works which support the latter: For
example, Carlana (2019) finds that the gender gap in performance in math exam
substantially increases when students are assigned to math teachers with stronger
gender stereotypes. She argues that this effect is at least partially driven by lower
self-confidence on math ability of girls exposed to gender-biased teachers. We
will show that our framework is useful to explain such a bias transmission from
teachers to students.

Consider a variant of our team-production model in two-sided double misspec-
ification. Suppose that player 1 is a student and player 2 is a teacher. The student’s
achievement (e.g., math test performance) is given by y= a(x1+x2+b)+ε , where
a represents a gender-specific capability and b is the student’s capability. The stu-
dent (player 1) knows her own capability b, but does not know the gender-specific
capability. So she thinks that the outcome is given by y = θ1(x1 + x2 + b) + ε

and learns θ1 over time. On the other hand, the teacher has a biased view about
the gender specific capability, and he thinks that the outcome is given by y =
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A2(x1 + x2 + θ2)+ ε , where A2 < a represents his bias. He does not know the
student’s individual capability θ2, and learns it over time. We assume that each
player (incorrectly) thinks that the opponent has the same view about the world,
This means that the student is not aware of the teacher’s gender-stereotype A2 < a.

This setup is different from the one presented in Section 4.2.2, in that different
players learn different parameters. However, this does not has a substantial impact
on the property of the steady state. Indeed, it is straightforward to show that the
result similar to Corollary 3 still holds, and in the steady state, both the teacher
and the student work less than in the correctly specified model.

The intuition behind this result is as follows. Since the teacher has a gender-
stereotype A2 < a, each period, he exerts less effort than in the correctly spec-
ified model. Because the student is not aware of it, from the student’s point of
view, the realized outcomes are systematically lower than the anticipation. Ac-
cordingly, after a long time, she becomes unrealistically pessimistic about the
gender-specific capability θ1, which weakens the incentive to work. So in this
framework, even though the student initially has an unbiased view about the envi-
ronment, the teacher’s gender bias is eventually transmitted to the student, due to
the second-order misspecification (i.e., the student’s unawareness of the teacher’s
bias).

Recent work by Heidhues, Kőszegi, and Strack (2020b) also argue that a gen-
der bias (more generally, a group discrimination) can endogenously arise as a con-
sequence of misspecified learning. Formally, they develop a single-agent learning
model, and show that an underconfident (resp. overconfident) agent tends to un-
derestimate (resp. overestimate) the capability of her in-group members. So in
their setup, the source of a group discrimination is one’s misconfidence about
her own capability. Our result complements their work by considering the case
in which an agent (a student in our context) does not have underconfidence, or
more generally, any bias about the physical environment. We find that a group
discrimination can still arise due to a bias transmission; one’s existing prejudice
may induce other players’ negative self-stereotypes through learning.
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5 Theorems for Convergence

This section generalizes Esponda, Pouzo, and Yamamoto (2019) by allowing mul-
tiple players and continuous actions. We show that the asymptotic motion of play-
ers’ action frequency is approximated by a differential inclusion, and we use it to
derive a sufficient condition for convergence.

5.1 General Setup

For each compact set A ⊂ Rn (or more generally, separable metric space A), let
4A denote the set of probability measures over the set A. We consider the dual
bounded-Lipschitz norm on4A, that is, for each µ ∈4A, let

‖µ‖= sup
f∈BL(A)

∫
A

f dµ

where BL(A) is the set of bounded Lipschitz continuous functions f on A with
supx∈A | f (x)|+ supx,y

| f (x)− f (y)|
|x−y| ≤ 1. This norm has two nice properties. First,

it metrizes the weak topology, that is, the topology induced by the dual bounded-
Lipschitz norm coincides with the weak topology on4A. Second, with this norm,
4A is a compact subset of a Banach space, i.e., the set of finite signed measures on
A is a Banach space when paired with the dual bounded-Lipschitz norm, and4A is
a compact subset in it. See Dudley (1966) and Billingsley (1999) for references.
The first property is needed to obtain our Propisition 8. The second property
is crucial in order to use a stochastic approximation technique in the proof of
Proposition 9. The dual bounded-Lipschitz norm is used in Hofbauer, Oechssler,
and Riedel (2009) and Perkins and Leslie (2014), who study learning dynamics in
games with continuous actions.

5.1.1 Objective World

There are two players i = 1,2 and infinitely many periods t = 1,2, · · · . In each
period t, each player i chooses an action xi from a compact set Xi ⊂ R. These
actions are not observable. Then they observe a noisy public output y ∈ Y which
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is distributed according to a probability measure Q(·|x) ∈4Y , where x = (x1,x2)

denotes the chosen action profile. Each player i’s payoff is ui(xi,y).
In the infinite-horizon game, each player i’s t-period history is ht

i =(xτ
i ,y

τ)t
τ=1,

where (xt
i,y

t) is player i’s action and the public outcome in period t. Let Ht
i denote

the set of all t-period history, and let H0
i = { /0}. Player i’s pure strategy in the

infinite-horizon game is a mapping si :
⋃

∞
t=0 Ht

i → Xi. Let Si denote the set of
player i’s pure strategies. Let ht

Y = (yτ)t
τ=1 denote the t-period public history. A

strategy is public if it depends only on public histories.

5.1.2 Subjective World and Model Hierarchy

We assume that the output distribution Q is not common knowledge among play-
ers. Instead, each player i has a set Θi,1 of subjective models, and in each model
θi,1 ∈ Θi,1, the output distribution given an action profile x is Qθi,1(·|x). Player
i thinks that the true world is described by one of these models, and her initial
prior about the model is µi,1 ∈4Θi,1. Player i’s models are correctly specified if
there is θi,1 such that Q(·|x) = Qθi,1(·|x) for all x. Otherwise her models are mis-
specified. Player i also has models about the opponent j’s model, that is, player i
believes that the opponent j has an initial prior µi,2 over a model set Θi,2, where
each model θi,2 induces the output distribution Qθi,2(·|x) for each action profile x.
This triplet Mi,2 = (µi,2,Θi,2,(Qθi,2(·|x))(x,θi,2)) is player i’s second-order model in
that it is her subjective view about player j’s subjective model. More generally, we
assume that each player i has a model hierarchy Mi = (Mi,1,Mi,2, · · ·) where each
Mi,k = (µi,k,Θi,k,(Qθi,k(·|x))(x,θi,k)) is player i’s kth-order model. That is, player i
believes that player j believes that player i’s model is Mi,3, player i believes that
player j believes that player i believes that player j’s model is Mi,4, and so on.

This framework is flexible and allows us to study a variety of information
structures, including first-order misspecification, second-order misspecification,
and double misspecification which we studied in Sections 3 and 4. In what fol-
lows, we will maintain the following technical assumptions.

Assumption 1. The following conditions hold:
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(i) Y and Θ are Borel subsets of the Euclidean space, and Θ is compact.

(ii) There is a Borel probability measure ν ∈4Y such that Q(·|x) and Qθi,k(·|x)
are absolutely continuous with respect to ν for all x and i, k, and θi,k.
(An implication is that there are densities q(·|x) and qθi,k(·|x) such that∫

A q(y|x)ν(dy) = Q(A|x) and
∫

A qθi,k(y|x)ν(dy) = Qθi,k(A|x) for any A ⊆ Y
Borel.)

(iii) q(·|x) and qθi,k(·|x) are continuous in θ and x.

(iv) There is a function g : X ×Y → R such that (a) for each y, g(x,y) is contin-
uous in x, (b) g(x, ·) ∈ L2(Y,Q(·|x)) for each x, and (c) for all x, x̂ i, k, and
θi,k, log q(·|x)

qθi,k (·|x̂)
≤ g(x, ·) Q(·|x)-a.s..

The parts (i)-(iii) are fairly standard. The part (iv) implies that every outcome
y is generated by each player i’s model, which is useful to establish a uniform
version of the law of large numbers. The assumption above is similar to As-
sumptions 1 and 2 of Esponda, Pouzo, and Yamamoto (2019), but there are two
differences. First, we allow the action set Xi to be continuous, in which case we
require continuity of q, as described in parts (iii) and (iv-a). Second, we allow
inferential naivety, so when we consider the log-likelihood log q(·|x)

qθi,k (·|x̂)
of the true

output probability and the subjective probability, we distinguish the actual action
profile x from the inferred action profile x̂.

We also assume that each player i believes that the models become common
knowledge at higher levels, in the following sense:

Assumption 2. Player i believes that the models (Mi,ki,Mi,ki+1) are common knowl-
edge after level ki <∞, that is, for each i, there is ki <∞ such that (Mi,ki,Mi,ki+1) =

(Mi,ki+2n,Mi,ki+1+2n) for each n = 1,2, · · · .

To interpret this assumption, suppose that ki = 1, so that

Mi,1 = Mi,3 = Mi,5 = · · · , and Mi,2 = Mi,4 = Mi,6 = · · · . (30)

Then player i believes that...27

27Here we use the fact that if player i believes E, then she believes that she believes E.

50



• Her own model is Mi,1.

• She believes that her own model is Mi,1.

• The opponent j believes that i’s model is Mi,3 = Mi,1. And so on.

In this sense, player i believes that her model Mi,1 is common knowledge. Like-
wise, Mi,2 = Mi,4 = Mi,6 = · · · implies that player i believes that the opponent j’s
model Mi,2 is common knowledge. So (30) indeed implies that player i believes
that the models (Mi,1,Mi,2) are common knowledge. Note that this assumption is
about whether player i thinks that the models are common knowledge, and not
about whether the models are common knowledge in the objective sense When
ki > 1, the condition stated in the assumption above implies that player i believes
that the opponent j believes that · · · that the models (Mi,ki,Mi,ki+1) are common
knowledge. We believe that Assumption 2 is satisfied in most applications.28

Pick ki as stated in Assumption 2. Then player i’s problem is strategically
equivalent to solving the following hypothetical game with ki +1 agents:

• Each period, each agent k = 1,2, · · · ,ki+1 chooses an action x̂i,k from a set
X̂i,k, where X̂i,k = Xi for odd k, and X̂i,k = X j for even k.

• Agent 1 is player i herself. She has the model Mi,1, and thinks that her
opponent is agent 2. That is, she thinks that the distribution of the public
outcome is Qθi,1(x̂i,1, x̂i,2) for some θi,1, where (x̂i,1, x̂i,2) is the action chosen
by agents 1 and 2.

• Other agents are hypothetical players which describe player i’s reasoning.
Each agent k = 2,3, · · · ,ki− 1 has the model Mi,k, and thinks that her op-
ponent is agent k+ 1. That is, she thinks that the distribution of the public
outcome is Qθi,k(x̂i,k, x̂i,k+1) for some θi,k

28This assumption is needed to establish Propositions 8 and 9. Indeed, if this assumption is
not satisfied, then we need infinite agents to describe player i’s reasoning, so the set X̂ becomes
the product of infinitely many X1 and X2. This set X̂ is not separable (it is well-known that the
l∞-space is not separable), so the dual bounded-Lipschitz norm on4X̂ may not coincide with the
topology of weak convergence.
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• Agents ki and ki +1 has the models Mi,ki and Mi,ki+1, respectively, and they
play the game with each other. That is, they think that the output distribution
is given by Qθi,ki

(x̂i,ki, x̂i,ki+1) for some θi,ki and Qθi,ki+1(x̂i,ki, x̂i,ki+1) for some
θi,ki+1, respectively.

• All the information structure above is common knowledge among the agents.

Intuitively, agent 1’s action x̂i,1 in this hypothetical game is player i’s actual action,
agent 2’s action x̂i,2 is player i’s prediction about the opponent j’s action, agent
3’s action x̂i,3 is player i’s prediction about j’s prediction about i’s action, and
so on. So the action profile x̂i = (x̂i,k)

ki+1
k=1 in this hypothetical game is essentially

player i’s prediction hierarchy. Let X̂i =×ki+1
k=1 Xi,k denote the set of all these action

profiles.
In what follows, each agent k in this hypothetical game is labelled as (i,k),

because they are agents which describe player i’s reasoning. The opponent j has
a different model hierarchy M j ,Mi, and hence her reasoning is represented by a
different set of agents ( j,k).

Let ŝi,k denote agent (i,k)’s strategy in the infinite-horizon hypothetical game,
and let ŝi = (ŝi,k)

ki+1
k=1 denote a strategy profile. This profile ŝi is also interpreted

as player i’s prediction hierarchy about strategies in the infinite-horizon game.
That is, ŝi,1 is player i’s actual strategy, ŝi,2 is player i’s prediction about player j’s
strategy, and so on. So ŝi,k ∈ Si for odd k, and ŝi,k ∈ S j for even k. We assume that
each ŝi,k is pure and public.

Given a pure strategy profile ŝi = (ŝi,k) in the hypothetical game, each agent
k’s posterior belief µ̂

t+1
i,k ∈ 4Θi,k can be computed using Bayes’ rule, after every

public history ht
Y . Formally, for each t and k, we have

µ̂
t+1
i,k (θi,k) =

µ̂ t
i,k(θi,k)Qθi,k(y

t |ŝi,k(ht−1
Y ), ŝi,k+1(ht−1

Y ))∫
Θi,k

µ̂ t
i,k(θi,k)Qθi,k(y

t |ŝi,k(ht−1
Y ), ŝi,k+1(ht−1

Y ))dθi,k

where ŝi,ki+2 = ŝi,ki . Here we use the fact that agent k thinks that the signal yt in
period t is drawn given the action profile (ŝi,k(ht−1

Y ), ŝi,k+1(ht−1
Y )), where ŝi,k(ht−1

Y )

is her own action, and ŝi,k+1(ht−1
Y ) is the opponent k + 1’s action. The above
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formula is valid only if no one deviates from the profile ŝi; if some agent k deviates,
then her posterior belief must be computed using a different formula. A strategy
profile ŝi is Markov if each agent’s strategy depends only on the belief hierarchy
µ̂ t

i , i.e., for each k and t, ŝi,k(ht
Y ) depends on ht

Y only through µ̂
t+1
i .

Example 1. (Myopically optimal agents) Suppose that the agents are myopic and
maximize their expected stage-game payoffs each period. In such a case, they
play a one-shot equilibrium given a belief-hierarchy µ̂ t in each period t. Recall
that each agent (i,k) thinks that her opponent is agent (i,k+1), so her subjective
expected stage-game payoff given a model θi,k is

Uθi,k(x̂i,k, x̂i,k+1) =
∫

Y
ui,k(x̂i,k,y)Qθi,k(dy|x̂i,k, x̂i,k+1)

where ui,k = u1 when i+k is even, and ui,k = u2 when i+k is odd. So the strategy
profile ŝi must satisfy the following equilibrium condition:

ŝi,k(µ̂i) ∈ arg max
x̂i,k∈X̂i,k

∫
Θi,k

Uθi,k(x̂i,k, ŝi,k+1(µ̂i))µ̂i,k(dθi,k) ∀k∀µ̂i. (31)

In words, the agents ki and ki +1 choose actions which are best response to each
other, the agent ki−1 best responds to the agent ki’s action, the agent ki−2 best
responds to that action, and so on. It is obvious that such a strategy profile ŝi is
Markov.

Example 2. (Dynamically optimal agents) Now consider dynamically optimal
agents, who maximize the expectation of the discounted sum of the stage-game
payoffs, ∑

∞
t=1 δ t−1ui,k(x̂i,k,y). Many applied papers use Markov perfect equilibria

as a solution concept. In our context, ŝi is a Markov perfect equilibrium if given
any belief hierarchy µ̂i, the continuation strategy profile ŝi|µ̂i satisfies

ŝi,k|µ̂i ∈ argmax
ŝi,k

∫
Θi,k

∞

∑
t=1

δ
t−1E[Uθi,k(x̂

t
i,k,x

t
i,k+1)|ŝi,k, ŝi,k+1|µ̂i]µ̂i,k(dθi,k)

for each k, where the expectation is taken over (x̂t
i,k,x

t
i,k+1). Note that this condi-

tion reduces to (31) when δ = 0 so that the agents are myopic.
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Let h=(xt ,yt)∞
t=1 denote a sample path (a history in the infinite-horizon game).

Also, let X̂ = X̂1× X̂2 be the product of the sets of all action profiles of the two
hypothetical games. Given a sample path h and given strategy profiles ŝ = (ŝ1, ŝ2)

of the two hypothetical games (for players 1 and 2), let σ t(h) ∈ 4X̂ denote the
action frequency up to period t, that is,

σ
t(h)[(x̂1, x̂2)] =

1
t

t

∑
τ=1

1{ŝi,k(h
τ−1
Y )=x̂i,k ∀i∀k}.

Intuitively, σ t(h)[(x̂1, x̂2)] describes how often the action profile x̂i was chosen in
each hypothetical game. (In other words, it describes how often each player i made
a prediction hierarchy x̂i.) Note that we cannot directly observe the actions x̂i,k of
the higher-level agents (i,k) with k≥ 2, as they are hypothetical agents. However,
since each agent uses a public strategy ŝi,k, we can back it up from the past public
history; given a history hτ−1

Y , the hypothetical agent k’s action in period τ must be
ŝi,k(hτ−1

Y ). This allows us to define the action frequency in the hypothetical game
as a function of the observed history h.

5.2 Posterior Beliefs and Kullback-Leibler Divergence

We first show that after a long time t, the posterior belief is concentrated on the
models which best explain the data. Specifically, we show that the belief is con-
centrated on the models which minimize the Kullback-Leibler divergence, which
is defined as follows. Let σ ∈ 4X̂ be a probability measure over X̂ . For each σ ,
the Kullback-Leibler divergence of model θi,k for agent k is defined as

Ki,k(θi,k,σ) =
∫

X̂

∫
Y

log
q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
Q(dy|x̂1,1, x̂2,1)σ(dx̂).

Intuitively, Ki,k(θi,k,σ) measures the distance between the true output distribution
and the subjective distribution induced by agent k’s model θi,k. To see this, think
about the special case in which σ is a degenerate distribution 1x̂1,x̂2 . Then the
Kullback-Leibler divergence of model θi,k can be rewritten as∫

Y
log

q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
Q(dy|x̂1,1, x̂2,1).
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This measures the distance between the true distribution q(·|x̂1,1, x̂2,1) and the sub-
jective distribution qθi,k(·|x̂i,k, x̂i,k+1) induced by the model θi,k. Indeed, this value
is always non-negative, and equals zero if and only if the true and subjective distri-
butions are the same. When σ is not a degenerate distribution, we take a weighted
sum of the Kullback-Leibler divergence over x̂ = (x̂1, x̂2), which leads to the defi-
nition of Ki,k(θi,k,σ) above.

As is clear from this formula, agent k’s subjective signal distribution qθi,k(y|x̂i,k, x̂i,k+1)

is potentially different from the true distribution q(y|x̂1,1, x̂2,1) in two ways. First,
agent k’s model θi,k can be misspecified in that the distribution qθi,k as a function
of the chosen action can be different from the true distribution q. Second, agent k
can have an inferential naivety. That is, while the true distribution is determined
by the actual actions chosen by players 1 and 2 (which is denoted by (x̂1,1, x̂2,1) in
our setup), agent k thinks that the output distribution is determined by the actions
chosen by agents k and k+1.

For each measure σ ∈4X̂ , let Θi,k(σ) denote the minimizers of the Kullback-
Leibler divergence, that is,

Θi,k(σ) = arg min
θi,k∈Θi,k

Ki,k(θi,k,σ).

Intuitively, this is the set of models which best explains the data when the past ac-
tion frequency was σ . The minimized Kullback-Leibler divergence is K∗i,k(σ) =

minθi,k∈Θi,k Ki,k(θi,k,σ). We first show that these minimizers have useful proper-
ties:

Lemma 1. For each i and k, (i) Ki,k(θi,k,σ)−K∗i,k(σ) is continuous in (θi,k,σ),
and (ii) Θi,k(σ) is upper hemi-continuous, non-empty, and compact-valued.

The following proposition shows that after a long time t, the posterior is con-
centrated on the best models Θi,k(σ

t). This extends Theorem 1 of Esponda,
Pouzo, and Yamamoto (2019) to the case with continuous action set Xi and with
multiple players. Let H denote the set of all sample paths h = (xt ,yt)∞

t=1. Given
strategy profiles ŝ, let Pŝ ∈ 4X denote the probability distribution of the sample
path h. Given a sample path h, let µ̂ t

i (h) denote the belief hierarchy in period t.
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Proposition 6. Given any i, k, and ŝ, Pŝ-almost surely, we have

lim
t→∞

∫
Θi,k

(Ki,k(θi,k,σ
t(h))−K∗i,k(σ

t(h)))µ̂ t+1
i,k (h)[dθi,k] = 0. (32)

Let H denote the set of sample paths h which satisfy (32). By Proposition 6,
Pŝ(H ) = 1.

5.3 Asymptotic Motion of Action Frequency

5.3.1 Stochastic Approximation and Differential Inclusion

In this subsection, we show that given any Markov strategy ŝ, the asymptotic
motion of the action frequency σ t is represented by a recursive formula. So pick
a Markov strategy ŝ, and pick a sample path h ∈H . Then by the definition, the
action frequency in each period is written as

σ
t+1(h) =

t
t +1

σ
t(h)+

1
t +1

1ŝ(µ̂t+1(h)).

That is, the action frequency in period t + 1 is a weighted average of the past
action frequency σ t and today’s action 1ŝ(µ̂t+1(h)). In what follows, we will show
that this second term 1ŝ(µ̂t+1(h)) can be written as a function of σ t , so that σ t+1 is
determined recursively.

Pick an arbitrary small ε > 0. Then let Bε :4X̂ → ∏
2
i=1 ∏

ki+1
k=1 4Θi,k be the

ε-perturbed belief correspondence defined as

Bε(σ) =

{
µ̂

∣∣∣∣∀i∀k∫
Θi,k

(Ki,k(θi,k,σ)−K∗i,k(σ))µ̂i,k(dθi,k)≤ ε

}
.

Roughly, Bε(σ) is the set of all belief hierarchies µ̂ such that each µ̂i,k is concen-
trated on the best models Θi,k(σ) given the mixture σ in the sense of (32).

Since h∈H , there is T such that for all t > T , µ̂ t+1(h)∈ Bε(σ
t). This in turn

implies that the action ŝ(µ̂ t+1) in period t+1 must be chosen from the ε-enlarged
policy correspondence Sε(σ

t), which is defined as

Sε(σ) = {ŝ(µ̂)|∀µ̂ ∈ Bε(σ)}

for each σ . This immediately implies the following result:
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Proposition 7. Pick a Markov strategy ŝ. Then given any h ∈ H , there is a
decreasing sequence {ε t}∞

t=1 with limt→∞ ε t = 0 such that

σ
t+1(h) ∈ t

t +1
σ

t(h)+
1

t +1
Sεt (σ t(h)).

This proposition implies that in a later period t, the action chosen in that period
is selected from the set Sε(σ

t) for small ε . Now we ask how this set looks like in
the limit as ε → 0. Given a Markov strategy ŝ, let

Ŝ(µ) =
{

x̂
∣∣∣x̂ = lim

n→∞
ŝ(µ̂n) for some (µ̂n)∞

n=1 with lim
n→∞

(µ̂n) = µ̂

}
for each µ . This Ŝ is an upper hemi-continuous policy correspondence induced
by ŝ. It is obvious that ŝ(µ̂) ∈ Ŝ(µ̂) for each µ̂ . Also a standard argument shows
that Ŝ is indeed upper hemi-continuous with respect to µ̂ . Note that Ŝ = ŝ if ŝ is
continuous. Then define

S0(σ) = {x̂ ∈ Ŝ(µ̂)|∀µ̂ ∈ B0(σ)}

where
B0(σ) = {µ̂|µ̂i,k ∈Θi,k(σ) ∀i∀k}.

The following proposition shows that when ε → 0, the set Sε(σ) which appears
in the previous proposition is approximated by S0(σ).

Proposition 8. Sε(σ) is upper hemi-continuous in (ε,σ) at ε = 0. So with the
dual bounded-Lipschitz norm,4Sε(σ) is upper hemi-continuous at ε = 0.

Propositions 7 and 8 suggest that after a long time, the motion of the action
frequency is approximated by

σ
t+1(h) ∈ t

t +1
σ

t(h)+
1

t +1
S0(σ

t(h)),

which is equivalent to

σ
t+1(h)−σ

t(h) ∈ t
t +1

(S0(σ
t(h))−σ

t(h))
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That is, the drift of the action frequency, σ t+1(h)−σ t(h), should be proportional
to the difference between today’s action chosen from S0(σ

t(h)) and the current ac-
tion frequency σ t(h). The next proposition formalizes this idea using the stochas-
tic approximation technique developed by Benaı̈m, Hofbauer, and Sorin (2005):
It shows that the asymptotic motion of the action frequency is described by the
differential inclusion

σ̇(t) ∈4S0(σ(t))−σ(t). (33)

In this differential inclusion, the drift of the action frequency is4S0(σ(t))−σ(t),
rather than S0(σ(t))−σ(t). The reason is as follows. As will be shown in Proposi-
tion 9 below, the differential inclusion (33) approximates the motion of the action
frequency in the limit as the period length in the discrete-time model shrinks to
zero. This means that a small time interval [t, t + ε] in the continuous-time model
should be interpreted as a collection of arbitrarily many periods in the discrete-
time model. Suppose now that players’ beliefs are in a neighborhood of µ during
this time interval [t, t + ε]. In all periods included in this interval, players choose
an action profile from the set S0(µ), and in particular, if S0(µ) contains two or
more action profiles, then different action profiles can be chosen in different peri-
ods. Accordingly, the action frequency during this interval can take any value in
4S0(µ), as described by the differential inclusion (33).29

To state the result formally, we use the following terminologies, which are
standard in the literature on stochastic approximation. Let τ0 = 0 and τt = ∑

t
n=1

1
n

for each t = 1,2, · · · . Then given a sample path h, the continuous-time interpola-
tion of the action frequency σ t is a mapping w(h) : [0,∞)→4X̂ such that

w(h)[τt + s] = σ
t(h)+

τ

τt+1− τt
(σ t+1(h)−σ

t(h))

for all t = 0,1, · · · and τ ∈ [0, 1
t+1). Intuitively, w represents the motion of the

action frequency as a piecewise linear path with re-indexed time. A mapping
29There is also a technical reason: In the proof of Proposition 9, we apply the stochastic ap-

proximation method of Benaı̈m, Hofbauer, and Sorin (2005), which requires that the drift term be
a convex-valued (and upper hemi-continuous) correspondence. So we need to convexify the drift
term by taking4S0(σ(t)), rather than S0(σ(t)).
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σ : [0,∞)→ 4X̂ is a solution to the differential inclusion (33) with an initial
value σ ∈ 4X̂ if it is absolutely continuous in all compact intervals, σ(0) = σ ,
and (33) is satisfied for almost all t. Since4S0(σ) is upper hemi-continuous with
closed convex values, given any initial value σ ∈ 4X̂ , the differential inclusion
(33) has a solution. (See Theorem 9 of Deimling (1992) on page 117.) Let Z(σ)

denote the set of all these solutions.

Proposition 9. Pick a Markov strategy ŝ. Then for any T > 0 and any sample
path h ∈H ,

lim
t→∞

inf
σ∈Z(w(h)[t])

sup
τ∈[0,T ]

‖w(h)[t + τ]−σ(τ)‖= 0.

5.3.2 Steady State and Generalized Berk-Nash Equilibrium

σ ∈ 4X̂ is a steady state of the differential inclusion (33) if σ ∈ 4S0(σ). The
following proposition shows that if the action frequency σ t converges, then its
limit point must be a steady state. The proof is exactly the same as Proposition 1
of EPY, and hence we omit it.

Proposition 10. Pick a Markov strategy s. Then for each sample path h ∈H , if
the action frequency σ t(h) converges, then its limit point limt→∞ σ t(h) is a steady
state of (33).

In all the examples in this paper, we assume that the agents are myopically
optimal so that the strategy profile ŝ satisfies (31). In this special case, steady
states of our differential inclusion are generalized Berk-Nash equilibria in the
following sense:

Definition 5. A probability measure σ ∈4X̂ is a generalized Berk-Nash equilib-
rium (GBNE) if for each pure action profile x̂ = (x̂1, x̂2) in the support of σ , for
each i and for each k, there is a belief µ̂i,k ∈4Θi,k(σ) such that

x̂i,k ∈ argmax
x̂′i,k

∫
Θi,k

Uθi,k(x̂
′
i,k, x̂i,k+1)µ̂i,k(dθi,k).

A generalized Berk-Nash equilibrium is degenerate if it is a point mass on some
pure action profile x̂.
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In words, in a generalized Berk-Nash equilibrium σ , each action profile x̂
which has a positive weight in σ is a one-shot equilibrium for some belief µ̂ , and
this belief µ̂ is concentrated on the models Θi,k(σ) which minimize the Kullback-
Leibular divergence. In a non-degenerate GBNE which assign positive weights on
multiple action profiles x̂, different action profiles x̂ may be supported by different
beliefs µ̂ . We will discuss more on this later.

Proposition 11. Suppose that the strategy profile ŝ satisfies (31). Then any steady
state of our differential inclusion (33) is a generalized Berk-Nash equilibrium. So
for each sample path h ∈H , if the action frequency σ t(h) converges, then its
limit point limt→∞ σ t(h) is a generalized Berk-Nash equilibrium.

Note that the action frequency may converge to non-degenerate equilibrium
σ , which assigns positive probability to multiple action profiles x̂. An intuition is
as follows. If the action frequency σ t converges to some σ , then from Proposition
6, the posterior belief µ̂ t will be concentrated on 4Θ(σ) after a long time, that
is, µ̂ t is in a neighborhood of 4Θ(σ) for large t. If all the beliefs in this neigh-
borhood induce the same equilibrium action x̂ (i.e., ŝ(µ̂) = x̂ for all beliefs µ̂ in a
neighborhood of4Θ(σ)), then the action frequency will eventually converge to a
point mass on x̂. But in general, this need not be the case; different beliefs µ̂ and
µ̂ ′ in this neighborhood may induce different equilibrium actions x̂ and x̂′. In such
a case, both x̂ and x̂′ can be chosen infinitely often on the path, and hence have
positive weights in the limiting action frequency σ .

Note, however, that in many applications, all GBNE are degenerate. Indeed,
if (i) there is a unique equilibrium x̂ for each belief µ̂ and (ii) there is a unique
minimizer θi,k of the Kullback-Leibular divergence for each action frequency σ ,
then obviously any GBNE is degenerate. All our examples in the paper satisfy
these assumptions.

We view GBNE as a natural extension of BNE of Esponda and Pouzo (2016)
to our setup. For comparison, let us think about the information structure con-
sidered in Esponda and Pouzo (2016), that is, suppose that the subjective signal
distribution Qθi,k(·|x) is independent of the opponent’s action (i.e., Qθi,k(·|x) =
Qθi,k(·|xi) for each i, k, and x). In this special case, all higher-level agents (i,k)
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with k ≥ 2 are irrelevant, in the sense that they do not influence the actions and
the beliefs of the actual player (i,1). This is so because each player i’s subjec-
tive expected payoff Uθi,1(xi) = ∑y∈Y Qθi,1(y|xi)ui(xi,y) and her Bayes’ formula

µ
t+1
i (θi,1) =

µt
i (θi,1)qθi,1(y

t |xt
i)∫

Θi,1
µt

i (θi,1)qθi,1(y
t |xt

i)dθi,1
are independent of the opponent j’s action.

Accordingly, GBNE reduces to a probability measure σ ∈4(X1×X2) on the set
X1×X2 such that for each pure action profile x = (x1,x2) in the support of σ and
for each i, there is a belief µi ∈4Θi,1(σ) such that

xi ∈ argmax
x′i

∫
Θi,1

Uθi,1(x
′
i)µi(dθi,1)

where Θi,1(σ) is the minimizers of the Kullback-Leibular divergence∫
X

∫
Y

log
q(y|x)

qθi,1(y|x)
Q(dy|x)σ(dx).

It is easy to check that GBNE is a weakening of BNE of Esponda and Pouzo
(2016), that is, any GBNE σ is a BNE. In particular, degenerate BNE is equiv-
alent to pure-strategy BNE, in that σ is a pure-strategy BNE if and only if it is
a degenerate GBNE. However, a non-degenerate GBNE need not be a mixed-
strategy BNE, because in a GBNE, (i) different actions xi may be supported by
different beliefs µi, and (ii) GBNE distribution σ allows correlation between x1

and x2. This difference comes from the fact that GBNE is a limit point of the
action frequency, while BNE is a limit point of the action itself. Specifically, in
Esponda and Pouzo (2016), there is an i.i.d. payoff perturbation each period, so
that each player (independently) mix actions each period. A mixed-strategy BNE
σ is regarded as a limit point of this mixed action. In this case, in a steady state,
the mixed strategy σi must be optimal (with a payoff perturbation) given a single
belief, and there is no correlation between actions of different players. In contrast,
in our model, each player chooses a pure action, so there is perfect correlation
between x1 and x2. Also as noted earlier, different action profiles x and x′ which
appear in non-degenerate GBNE σ are played in different periods t and t ′; so they
are supported by different beliefs µ t and µ t ′ .
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5.4 Motion of the KL Minimizer

5.4.1 Identifiability and Differential Inclusion

Our Proposition 9 shows that the asymptotic motion of the action frequency σ t is
described by the differential inclusion (33). However, solving the differential in-
clusion (33) is not easy in general. For example, in many applications (including
the ones in this paper), there are continuous actions, in which case the action fre-
quency σ t is a probability distribution over an infinite-dimensional (continuous)
space, and thus the differential inclusion becomes an infinite-dimensional prob-
lem. In this section, we show that this dimensionality problem can be avoided
if we look at the asymptotic motion of the belief, rather than that of the action
frequency.

We will impose the following identifiability assumption, which requires that
there be a unique KL minimizer θi,k(σ) for each measure σ ∈4X̂ . This assump-
tion is satisfied in many applications, see Esponda and Pouzo (2016) for more
detailed discussions on this assumption.

Assumption 3. For each i, k, and σ , there is a unique minimizer θi,k(σ) ∈Θi,k of
the Kullback-Leibular divergence Ki,k(θi,k,σ).

Since Θi,k(σ) is upper hemi-continuous in σ , under the identifiability assump-
tion, each KL minimizer θi,k(σ) is continuous in σ . The next lemma shows that
θ(σ) = (θi,k(σ))i,k is Lipschitz continuous if some additional assumptions hold.
With an abuse of notation, let Ki,k(θi,k, x̂) = Ki,k(θi,k,σ) for σ = 1x̂.

Assumption 4. The following conditions hold:

(i) For each i, k, and m, ∂Ki,k(θi,k,x̂)
∂θi,k,m

< ∞, where θi,k,m denotes the m-th compo-
nent of θi,k. Also for each x̂, Ki,k(θi,k, x̂) is twice-continuously differentiable

with respect to θi,k, that is, ∂ 2Ki,k(θi,k,x̂)
∂θi,k,m∂θi,k,n

is continuous in θi,k.

(ii) ∂Ki,k(θi,k,x̂)
∂θi,k,m

is equi-Lipschitz continuous, that is, there is L > 0 such that

|∂Ki,k(θi,k,x̂)
∂θi,k,m

− ∂Ki,k(θi,k,x̂′)
∂θi,k,m

|< L|x̂− x̂′| for all i, k, m, θi,k, x̂, and x̂′.
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(iii) The KL minimizer θ(σ) satisfies both the first-order and second-order con-
ditions for each σ . (An implication is that the inverse of the Hessian matrix
exists.)

Lemma 2. θ(σ) is Lipschitz continuous in σ . That is, there is L > 0 such that
|θ(σ)−θ(σ̃)| ≤ L‖σ − σ̃‖.

Now we consider the motion of the KL minimizer θ t = (θ t
i,k)i,k. Let wθ denote

the continuous-time interpolation of θ t . Let ∇Ki,k(θi,k,x) = (
∂Ki,k(θi,k,x)

∂θi,k,m
)m, and

∇K(θ ,x) = (
∂Ki,k(θi,k,x)

∂θi,k,m
)i,k,m. Also let ∇2Ki,k(θi,k,σ) denote the Hessian matrix

of Ki,k(θi,k,σ) with respect to θi,k, that is, each component of ∇2Ki,k(θi,k,σ) is
∂ 2Ki,k(θi,k,σ)
∂θi,k,m∂θi,k,n

. Let ∇2K(θ ,σ) denote a block diagonal matrix whose main diagonal

blocks are ∇2Ki,k(θi,k,σ), that is,

∇
2K(θ ,σ) =

 ∇2K1,1(θ1,1,σ) 0
∇2K1,2(θ1,2,σ)

0 . . .

 .

With an abuse of notation, let S0(θ) denote S0(σ) for σ with θ(σ) = θ . The
following proposition shows that the asymptotic motion of the KL minimizer is
described by the differential inclusion

θ̇(t) ∈
⋃

σ :θ(σ)=θ(t)

⋃
σ ′∈4S0(θ(t))

−(∇2K(θ(t),σ))−1 (
∇K(θ(t)),σ ′)

)
. (34)

Let Zθ (θ(0)) be the set of solutions to the differential inclusion (34) with the initial
value θ(0).

Proposition 12. Suppose that Assumptions 3 and 4 hold. Then for any T > 0 and
any sample path h ∈H ,

lim
t→∞

inf
θ∈Zθ (wθ (h)[t])

sup
τ∈[0,T ]

|wθ (h)[t + τ]−θ(τ)|= 0.

To interpret the differential inclusion (34), consider the special case in which
Θi,k ⊂ R, i.e., assume that agent k’s model θi,k is one-dimensional. Then from
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(33), we have

θ̇i,k(t) ∈
⋃

σ :θ(σ)=θ(t)

⋃
σ ′∈4S0(θ(t))

−
K′i,k(θi,k(t),σ

′)

K′′i,k(θi,k(t),σ)
(35)

for each i and k, where K′i,k(θ ,σ) =
∂Ki,k(θ ,σ)

∂θ
and K′′i,k(θ ,σ) =

∂ 2Ki,k(θ ,σ)

∂θ 2 .
The denominator K′′i,k(θi,k(t),σ) measures the curvature of the Kullback-Leibular

divergence. Note that this term is always positive, because the second-order con-
dition must be satisfied (Assumption 4(iii)). So this term influences the absolute
value of θ(t), but not the sign of θ̇i,k(t); this in turn implies that this denominator
influences the speed of θi,k(t), but not the direction. Intuitively, when the curve
is flatter (i.e., K′′i,k is close to zero), all models in a neighborhood of θ(t) almost
equally fit the past data. Hence the KL minimizer θ(t) is more sensitive to the new
data generated by today’s action, and it changes quickly.

The numerator −K′i,k(θi,k(t),σ
′) measures how much an increase in θi,k im-

proves fitness to the new data generated by today’s action σ ′. This term influences
the sign of θ̇i,k(t), so it determines whether θi,k(t) moves up or down. Intuitively,
when this numerator is positive, (at least in a neighborhood of θ(t)) higher θ bet-
ter explains the new data generated by today’s action, so θ(t) moves up. On the
other hand, when this numerator is negative, lower θ better explains the new data,
so θ(t) moves down.

When we consider the dynamic of θ t = θ(σ t), the drift of θ t cannot be
uniquely determined, for two reaosns. First, the KL minimizer θ t may not uniquely
determine the agents’ actions today, in the sense that S0(θ

t) may not be a single-
ton. (As pointed out by Esponda, Pouzo, and Yamamoto (2019), in the single-
agent setup, this happens when the agent is indifferent over multiple actions at a
model θ = θ t .) In our differential inclusion (35), this multiplicity is captured by
taking the union over σ ′ ∈ 4S0(θ(t)). Note that the same multiplicity problem
appears in the differential inclusion (33).

Second, the KL minimizer θ t may not uniquely determine the past action fre-
quency, in the sense that there may be more than one σ such that θ(σ) = θ t .
Note that even if two action frequencies σ and σ̃ yield the same KL minimizer
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(i.e., θ(σ) = θ(σ̃)), they may yield different curvatures of the KL divergence, so
they influence the speed of θi,k(t) differently. In our differential inclusion, this
multiplicity is captured by taking the union over σ with θ(σ) = θ(t).

5.4.2 Convergence with Identifiability

Using the differential inclusion (34), now we will derive a sufficient condition for
the agents’ beliefs θ t to converge for each type of misspecification considered in
Sections 3 and 4. First, consider first-order misspecification in Section 3, i.e., set
k1 = k2 = 2, M1,1 =M2,2, and M2,1 =M1,2, and assume that agent (1,1) is correctly
specified. Assume as in Section 3 that players play a static Nash equilibrium
every period and they predict the opponent’s strategy correctly, so that ŝ1,1 = ŝ2,2

and ŝ2,1 = ŝ1,2. Since k1 = k2 = 2, θ t is a four-dimensional variable, i.e., θ t =

(θ t
1,1,θ

t
1,2,θ

t
2,1,θ

t
2,2). However, the differential inclusion (34) is essentially a one-

dimensional problem. Indeed,

• Agent (2,2) is redundant in that her belief is identical with the belief of
agent (1,1) every period. (This follows from the fact that player 2 knows
player 1’s posterior belief every period.) Similarly, agent (1,2) is redundant.

• Agent (1,1) is correctly specified, so we have θ1,1(σ) = θ ∗ for all σ , which
implies that θ t

1,1 = θ ∗ for any period t. (This reflects the fact that player 1
eventually learn the true state regardless of players’ play.)

So in order to know the asymptotic motion of θ t , we only need to know the asymp-
totic motion of player 2’s belief, θ t

2,1. Similarly, under one-dimensional double
misspecification considered in Section 4.2.1, the differential inclusion (34) re-
duces to a one-dimensional problem. This is so because player 1 eventually learns
the true state and the hypothetical player is redundant, in that her belief is exactly
the same as player 2’s belief after every history. Our next proposition shows that
in these cases, the belief converges almost surely, regardless of the initial prior.

To state the result formally, we use the following terminologies. Let I be the
set of all agents. An agent (i,k) is correctly specified if there is a correct model
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θ ∗i,k ∈ Θi,k such that Qθ∗i,k
(x) = Q(x) for all x. An agent (i,k) has no inferential

naivety if (i) i+ k is even and (ŝi,k(µ̂), ŝi,k+1(µ̂)) = (ŝ1,1(µ̂), ŝ2,1(µ̂)) for all µ̂ , or
(ii) i+ k is odd and (ŝi,k(µ̂), ŝi,k+1(µ̂)) = (ŝ2,1(µ̂), ŝ1,1(µ̂)) for all µ̂ . An agent
(i,k) is unbiased if she is correctly specified and has no inferential naivety. Let I∗

denote the set of all unbiased agents (i,k).
Given a Markov strategy ŝ, two agents (i,k) and ( j, l) are equivalent if i+ k ≡

j + l (mod 2), Mi,k = M j,l , and (si,k,si,k+1) = (s j,l,s j,l+1). Consider a partition
of the set of agents induced by the equivalence classes, and for each equivalence
class, pick a representative agent (i,k). Let I∗∗ the set of these representative
agents. (Mathematically, I∗∗ is a quotient set I/ ∼, where (i,k) ∼ ( j, l) if (i,k)
and ( j, l) are eqivalent.) For each (i,k) ∈ I∗∗, let I(i,k) denote the set of all agents
equivalent to (i,k). Note that all agents in the set I(i,k) choose the same action
and have the same belief every period.

θ is a steady state if it is a steady state of the differential inclusion (34), i.e.,
∇K(θ ,σ ′) = 0 for some σ ′ ∈4S0(θ). Let E denote the set of all steady states.

Proposition 13. Suppose that Assumptions 3 and 4 hold. Pick a Markov strategy
ŝ, and suppose that I∗∗ \ I∗ = {(i,k)} and Θi,k ⊂ R. Then for any sample path
h∈H , the belief converges to a steady state, i.e., limt→∞ θ t(h)∈ E. In particular,
if there is a unique steady state, θ t converges there almost surely.

The assumption I∗∗ \ I∗ = {(i,k)} implies that there is essentially only one
agent whose belief moves in a non-trivial way; all other agents are redundant or
learn the true state eventually. This assumption is satisfied, for example, in a
game with first-order misspecification and one-sided double misspecification.30

The proposition shows that in such a case, the belief converges almost surely
as long as the identifiability condition (Assumption 3) and Assumption 4 hold.
This result is a natural extension of Heidhues, Kőszegi, and Strack (2020a) and
Esponda, Pouzo, and Yamamoto (2019), who prove convergence of the belief for
a single-agent problem.

30Note that this proposition applies even when players are patient; if players play a Markov
perfect equilibrium, we have I∗∗ \ I∗ = {(i,k)}.
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Next, consider second-order misspecification studied in Section 4.1. In this
case, the two beliefs θ2 and θ̂1 evolve in a non-trivial way. Similarly, under two-
sided double misspecification studied in Section 4.2.2, the two beliefs θ1 and θ2

evolve in a non-trivial way. Our next proposition shows that the belief converges
even in these cases, provided that some additional conditions hold. Consider the
model studied in Section 4.1. Given a misspecified parameter A, let f2(θ̂1,A) de-
note the set of “steady-state belief” of player 2, when the hypothetical player’s be-
lief is fixed at θ̂1. That is, f2(θ̂1,A) is the set of all θ2 such that there is (x1,x2, x̂1)

satisfying the consistency condition (19) and the incentive-compatibility condition
(14) through (16). Similarly, given a belief θ2 of player 2, let f̂1(θ2,A) be the set
of all θ1 such that there is (x1,x2, x̂1) satisfying the consistency condition (18) and
the incentive-compatibility condition (14) through (16). A steady state studied in
Section 4.1 can be seen as an intersection of the two graphs {(θ2, f̂1(θ2,A))|∀θ2}
and {( f2(θ̂1,A), θ̂1)|∀θ̂1}.

Proposition 14. Consider the game with the second-order misspecification in Sec-
tion 4.1, and suppose that Assumptions 3 and 4 hold. Pick a parameter A such
that

(i) f2(θ̂1,A) and f̂1(θ2,A) are singletons for all θ̂1 and θ2 (so that they are
functions of θ̂1 and θ2, rather than correspondences),

(ii) f2(θ̂1,A) and f̂1(θ2,A) are continuously differentiable in θ̂1 and θ2, respec-
tively, and

(iii) max
θ̂1
|∂ f2(θ̂1,A)

∂ θ̂1
|maxθ2 |

∂ f̂1(θ2,A)
∂θ2

|< 1.

(iv) The KL divergence is single-peaked, in that for each (i,k), there is θi,k such
that K′i,k(θ̃i,k,σ)< 0 for all θ̃i,k < θi,k and K′i,k(θ̃i,k,σ)> 0 for all θ̃i,k > θi,k

Then there is a unique steady state θ ∗ = (θ ∗2 , θ̂
∗
1 ), and the belief converges there

almost surely regardless of the initial prior. The same result holds for two-sided
double misspecification by replacing f̂1(θ2,A) with f1(θ2,A), where f1(θ2,A) is a
“steady-state belief” of player 1 given player 2’s belief θ2
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This proposition gives a sufficient condition for belief convergence. It requires
that f2 and f̂1 are continuously differentiable functions and their derivatives are
not too large (i.e., changing θ̂1 does not influence the steady-state belief of the
opponent much, and vice versa).

In the case of second-order misspecification, if the misspecification is small in
that the parameter A is close to a, there is a simpler sufficient condition for conver-
gence; we can drop assumption (iii) in Proposition 14. To see why, consider the
case in which A = a so that there is no misspecification. We claim that assumption
(i) in Proposition 14 automatically implies assumption (iii). Indeed, when A = a,
we always have θ ∗ ∈ f̂1(θ2,a), so that assumption (i) implies f̂1(θ2,a) = θ ∗ for
all θ2. Then assumption (iii) is satisfied as ∂ f̂1(θ2,A)

∂θ2
= 0. By the continuity, the

same is true as long as the parameter A is close to a. The following corollary
summarizes this discussion:

Corollary 4. Consider the game with the second-order misspecification in Section
4.1. Suppose that assumptions (i) and (ii) in Proposition 14 are satisfied at A = a.
Then there is A > a such that for any A ∈ (a,A), there is a unique steady state,
and θ t converges there almost surely regardless of the initial prior.

5.4.3 Convergence Without Identifiability

In the previous subsection, we have seen that the motion of the KL minimizer
can be described by a differential inclusion if the identifiability condition holds.
However, there are some economic examples which do not satisfy the identifiabil-
ity. For example, the model of overconfidence studied in Heidhues, Kőszegi, and
Strack (2018) does not satisfy the identifiability in general.

The following proposition shows that even in such a situation, the belief still
converges to a steady state if some additional assumptions on payoffs and infor-
mation structures are satisfied. For each action frequency σ , let θ i,k(σ) denote
the minimal KL minimizer, that is, let θ i,k(σ) = minθi,k∈Θi,k(σ)θi,k. Likewise,
let θ i,k(σ) denote the maximal KL minimizer. Also, when the problem is one-
dimensional (i.e., I∗∗ \ I∗ = {(i,k)}), for each model θi,k, let S0(θi,k) = S0(µ)
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where µ is a degenerate belief on θ such that θ j,l = θi,k for all ( j, l) ∈ I(i,k) and
θ j,l = θ ∗ for all ( j, l) ∈ I∗.

Proposition 15. Pick any Markov strategy ŝ. Assume that

(i) The problem is one-dimensional, i.e., I∗∗ \ I∗ = {(i,k)} and Θi,k ⊂ R.

(ii) For each pure action profile x, the KL divergence Ki,k(θ ,1x) is single-peaked,
i.e., there is a unique KL minimizer θi,k(x),

∂Ki,k(θ ,1x)
∂θi,k

< 0 for θi,k < θi,k(x),

and ∂Ki,k(θ ,1x)
∂θi,k

> 0 for θi,k > θi,k(x).

(iii) There is a unique steady state σ∗, and θi,k(σ
∗) = {θ ∗i,k}.

(iv) S0(θ̃i,k) is a function (rather than a correspondence) of θ̃i,k, and θi,k(S0(θ̃i,k))

is increasing in θ̃i,k.

(v) For each belief µ̂ whose support is compact, S0(µ)⊆
⋃

θi,k∈co(suppµ̂i,k)
S0(θi,k).

Then for each sample path h ∈H , limt→∞ θ i,k(σ
t(h)) = limt→∞ θ i,k(σ

t(h)) =
θ ∗i,k.

6 Related Literature

There is a rapidly growing literature on Bayesian learning with model misspec-
ification. Nyarko (1991) presents an example in which the agent’s action does
not converge. Fudenberg, Romanyuk, and Strack (2017) consider a general two-
state model and characterize the agent’s asymptotic actions and behavior. Hei-
dhues, Kőszegi, and Strack (2018), Heidhues, Kőszegi, and Strack (2020a), and
He (2019) study a continuous-state setup, and they show that the agent’s action
and belief converge to a Berk-Nash equilibrium of Esponda and Pouzo (2016),
under some assumptions on payoffs and information structure. Esponda, Pouzo,
and Yamamoto (2019) characterize the agent’s asymptotic behavior in a general
single-agent model. Fudenberg, Lanzani, and Strack (2020) discuss robustness of
steady states. All these papers look at a single-agent problem and focus on first-
order misspecification. More recently, Ba and Gindin (2020) consider two-player
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team production in which both players are overconfident about their own capa-
bility. They show that if actions (efforts) are complements and information has
a positive externality, then learning is mutually reinforcing, i.e., one’s strategic
play reduces both players’ efforts and results in a more suboptimal outcome. Our
work strengthens their result, in three ways. First, our Proposition 1 gives a nec-
essary and sufficient condition for mutually-reinforcing learning: Assuming that
the base misspecification effect is negative, our proposition shows that player 1’s
strategic play reduces both players’ efforts if and only if the two asymptotic best
response curves are upward-sloping (i.e., BR′1 > 0 and BR′2 > 0).31 Second, our
Proposition 1 can be applied to a more general setup, such as Cournot duopoly
and tournaments, which allows us to study a wide range of applications. Third,
and perhaps most importantly, we develop a model of higher-order misspecifica-
tion and study how each type of misspecification influences players’ beliefs and
actions.

Misspecified learning has also been studied in other settings and applications.
A literature on social learning studies how inferential naivety or model misspecifi-
cation influences the asymptotic outcomes (e.g.,DeMarzo, Vayanos, and Zwiebel
(2003), Eyster and Rabin (2010), Gagnon-Bartsch (2016), Gagnon-Bartsch and
Rabin (2016), Bohren and Hauser (2020), and Frick, Iijima, and Ishii (2020)).32

Molavi (2020) considers a general equilibrium model in which a representative
agent has a misspecified view about the world. Cho and Kasa (2017) study an
asset-pricing model in which an agent incorrectly believes that the environment is
not stationary.

A prominent example of the first-order misspecification is overconfidence on
own capability. Plenty of experimental and empirical papers report that people ex-
hibit overconfidence on own ability in various economic activities, such as strate-
gic entries (Camerer and Lovallo, 1999), corporate investments (Malmendier and

31The assumptions of Ba and Gindin (2020) (strategic complementarity and positive information
externality) indeed ensure upward-sloping asymptotic best response curves.

32For experimental evidence on how social-learning outcomes depart from a correctly specified
learning model, see, e.g., Çelen and Kariv (2005), Kübler and Weizsäcker (2004, 2005).
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Tate, 2005), and merger decisions (Malmendier and Tate, 2008).3334 Furthermore,
recent empirical evidence suggests that overconfidence on a particular aspect of
own capability persists even after a long time and a plenty of feedback (Hoff-
man and Burks, 2020; Huffman, Raymond, and Shvets, 2019), which calls for the
analysis of long-run behavior under model misspecifications.

Similarly, there is evidence that people sometimes have systematically incor-
rect views of their opponents’ beliefs and actions, as in our second-order misspeci-
fication model. In both laboratory and field studies of disclosure games, departing
from the theoretical prediction, people often do not disclose unfavorable (but not
the worst) information (Dranove and Jin, 2010; Brown, Camerer, and Lovallo,
2012). Jin, Luca, and Martin (forthcoming) conduct more detailed experiments to
test potential mechanisms. They find that receivers systematically make incorrect
predictions about their opponents’ actions, and the receivers also choose actions
based on such incorrect views.. In common-value auctions, classical evidence
suggests that bidders often mispredict other bidders’ behavior and suffer from a
loss, which is known as the “winner’s curse” (Kagel and Levin, 2002). Avery and
Kagel (1997) report that such suboptimal bidding behavior systematically persists
even when bidders have received dozens of feedback.

Finally, there is a literature which studies implications of one’s misspecifica-
tion in a static game theoretic model. As discussed in Section 3.2.1, Kyle and
Wang (1997) analyze a variant of one-shot Cournot duopoly with first-order mis-
specification.35 Madarász (2012) considers a player who misspecifies other play-

33See Malmendier and Tate (2015) for reviewing managerial overconfidence, Daniel and Hirsh-
leifer (2015) for reviewing overconfidence in financial markets, and Grubb (2015) for reviewing
consumers’ overconfidence.

34Benoı̂t and Dubra (2011) point out that most of these works may not be sufficient to conclude
that people have overconfidence, because it can also be explained by considering a model in which
people do not have overconfidence but face uncertainty about some aspect of the environment.
However, this explanation is not supported by Benoı̂t, Dubra, and Moore (2015); they conduct
a lab experiment which separates out the effect of uncertainty, and find that subjects still exhibit
overconfidence.

35See Kőszegi (2014), Grubb (2015), and Heidhues and Kőszegi (2018) for reviews of theoret-
ical works which study overconfident agents in contract theory and industrial organization.
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ers’ knowledge, which can be described by our double misspecification model.
Our paper contributes to this literature in that we characterize how misspecified
players learn about own environment in a general public-monitoring setup, and de-
rive a number of economic implications. Indeed, as discussed in Aghion, Bolton,
Harris, and Jullien (1991), the theory of imperfect competition with complete
information (e.g., its demand function is known) is often defended with the ar-
gument that if the economic environment remains fixed over time, then players
eventually learn all relevant parameters from past experience. Since a misspec-
ified player may not be able to correctly learn a true parameter, we believe it is
important to formally analyze the learning process and the effect of strategic in-
teraction on the long-run outcomes.
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A Proofs

A.1 Proof of Proposition 1

Pick x∗ and A∗ as stated. Since the steady-state actions (x∗1,x
∗
2) are interior points,

they must satisfy the first-order conditions

∂U1(x1,x∗2,θ
∗)

∂x1
= 0, (36)

∂U2(x∗1,x2,θ)

∂x2

∣∣∣∣
θ=θ2(x∗,A)

= 0. (37)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text. That is,

M =

[
M11 M12

M21 M22

]
Since BR′1BR′2 , 1, we have detM , 0, so the implicit function theorem guarantees
that for any parameter A close to A∗, there is an action profile x∗ which satisfies
the first-order conditions (36) and (37). These action profiles are globally optimal
(i.e., maximize the expected payoff given the belief θ1 = θ ∗ and θ2(x∗,A)), be-
cause of the regularity conditions (i) and (ii). So this x∗ is a steady state given the
parameter A. The implicit function theorem also asserts that[

M11 M12

M21 M22

][
∂x∗1
∂A
∂x∗2
∂A

]
=−

[
0

M2A

]
,

Solving this system of equations,

∂x∗2
∂A

=−M11M2A

detM
,

∂x∗1
∂A

=
M12M2A

detM
.

Dividing both the numerator and denominator of the first equation by M11M22

and using detM = M11M22−M12M21, we have ∂x∗2
∂A = − 1

1−BR′1BR′2
M2A
M22

. Also by

combining the two equations above, we have ∂x∗1
∂A = BR1

∂x2
∂A .
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Next, we prove BR′1BR′2 < 1 by contradiction. Suppose that BR′1BR′2 > 1. Then
we have either (i) BR′1 > 0 and BR′2 > 0, or (ii) BR′1 < 0 and BR′2 < 0. Consider
case (i). Then we have BR′2 > 1

BR′1
> 0. This means that if we take x1 on the

horizontal axis and x2 on the vertical axis, then the two asymptotic best response
curves are upward-sloping at the steady state action x∗, and BR2 is steeper than
BR1. This and the continuity of BRi immediately imply that BR1 and BR2 must
intersect at some x1 > x∗1, but this contradicts with the fact that x∗ is a unique
steady state. The same argument works for case (ii).

Hence we have BR′1BR′2≤ 1. Also, dividing both sides of detM , 0 by M11M22,
we have BR′1BR′2 , 1.

A.2 Proof of Proposition 2

Pick A∗ and x∗ as stated. Since x∗ is an interior point, it must satisfy the first-order
conditions

∂U1(x1,x∗2,θ
∗)

∂x1
= 0, (38)

∂U2(x̂∗1,x2,θ2)

∂x2
= 0, (39)

∂Û1(x1,x∗2, θ̂1)

∂x1
= 0. (40)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text.

By the regularity condition (iii), detM , 0, so the implicit function theorem
guarantees that for any parameter A close to A∗, there is an action profile x∗ which
satisfies the first-order conditions (38)-(40). These action profiles are globally
optimal, because of the regularity conditions (i) and (ii). So this x∗ is a steady
state given the parameter A. The implicit function theorem also asserts that M11 M12 M13

M21 M22 M23

M31 M32 M33




∂x∗1
∂A
∂x∗2
∂A
∂ x̂1
∂A

=−

 0
0

M3A

 ,
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Solving this system of equations,

∂ x̂∗1
∂A

=−(M11M22−M12M21)M3A

detM
,

∂x∗2
∂A

=
M11M23M3A

detM
,

∂x∗1
∂A

=−M12M23M3A

detM
.

Dividing both the numerator and the denominator of the second equation by M11M22M33

and using detM = M11M22M33 + M12M23M31 −M12M21M33 −M11M32M23, we
have

∂x∗2
∂A

=−
BR′23

1−BR′12BR′23BR′31−BR′12BR′21−BR′23BR′32
·M3A

M33

=−M3A

M33

(
BR′23

1−BR′23BR′32

)(
1−BR′23BR′32

1−BR′12BR′23BR′31−BR′12BR′21−BR′23BR′32

)
=−M3A

M33

(
BR′23

1−BR′23BR′32

)(
1

1−BR′12NE ′2

)
.

The second equation in the proposition follows from the second and the third
equations.

A.3 Proof of Proposition 3

Pick A∗ and x∗ as stated. Since x∗ is an interior point, it must satisfy the first-order
conditions

∂U1(x1,x∗2,θ
∗)

∂x1
= 0, (41)

∂U2(x̂∗1,x2,θ2)

∂x2
= 0, (42)

∂Û1(x1,x∗2,θ2)

∂x1
= 0. (43)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text.

75



By the regularity condition (iii), detM , 0, so the implicit function theorem
guarantees that for any parameter A close to A∗, there is an action profile x∗ which
satisfies the first-order conditions (41)-(43). These action profiles are globally
optimal, because of the regularity conditions (i) and (ii). So this x∗ is a steady
state given the parameter A. The implicit function theorem also asserts that M11 M12 M13

M21 M22 M23

M31 M32 M33




∂x∗1
∂A
∂x∗2
∂A
∂ x̂1
∂A

=−

 0
M2A

M3A

 ,
Solving this system of equations,

∂ x̂∗1
∂A

=−(M11M22−M12M21)M3A− (M11M32−M12M31)M2A

detM
,

∂x∗2
∂A

=−M11(M33M2A−M23M3A)

detM
,

∂x∗1
∂A

=
M12(M33M2A−M23M3A)

detM
.

The rest of the proof is very similar to that of Proposition 2, and hence omitted.

A.4 Proof of Proposition 4

Pick A∗ and x∗ as stated. Since x∗ is an interior point, it must satisfy the first-order
conditions

∂U1(x1, x̂∗2,θ1)

∂x1
= 0, (44)

∂U2(x̂∗1,x2,θ2)

∂x2
= 0, (45)

∂Û1(x̂1,x∗2,θ2)

∂ x̂1
= 0, (46)

∂Û2(x∗1, x̂2,θ1)

∂ x̂2
= 0. (47)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text.
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By the regularity condition (iii), detM , 0, so the implicit function theorem
guarantees that for any parameter A2 close to A∗2, there is an action profile x∗ which
satisfies the first-order conditions (44)-(47). These action profiles are globally
optimal, because of the regularity conditions (i) and (ii). So this x∗ is a steady
state given the parameter A. The implicit function theorem also asserts that

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44




∂x∗1
∂A2
∂x∗2
∂A2
∂ x̂∗1
∂A2
∂ x̂∗2
∂A2

=−


0

M2A

M3A

0

 ,
Solving this system and using M13 = M24 = M34 = M43 = 0,

∂x∗2
∂A2

=
(M14M41M33−M11M33M44)M2A +(M11M23M44−M23M14M41)M3A

detM
∂x∗1
∂A2

=
(M12M33M44−M33M42M14)M2A− (M23M44M12−M23M42M14)M3A

detM
.

Dividing both the numerator and the denominator of the first equation by M11M22M33M44,

∂x∗2
∂A2

=−
{
(1−BR14BR41)

M2A

M22
+(BR23−BR23BR14BR41)

M3A

M33

}
M11M22M33M44

detM

=− (1−BR14BR41)

(
M2A

M22
+BR23

M3A

M33

)
M11M22M33M44

detM
.

Note that

detM =M11M22M33M44 +M14M21M33M42−M14M22M33M41−M12M21M33M44

−M11M23M32M44−M14M23M31M42 +M14M23M32M41 +M12M23M31M44,

so
M11M22M33M44

detM
=

1
(1−BR′14BR′41)(1−BR′23BR′32)− (BR′12 +BR′14BR′42)(BR′21 +BR′23BR′31)

=

(
1

(1−BR′14BR′41)(1−BR′23BR′32)

)(
1

1−NE ′1NE ′2

)
Plugging this int the equation above, we obtain the first equation in the proposi-
tion. The second equation can be derived in a similar way.
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A.5 Proof of Proposition 5

Proof of Part (i). When A = a, the one-shot Nash equilibrium xcorrect is a steady
state under first-order misspecification, second-order misspecification, and double
misspecification. By the assumption, a steady state is unique, and hence the result
follows.

Proof of Part (ii). Let Mfirst, Msecond, and Mdouble denote the matrix M de-
fined in Sections 3, 4.1, and 4.2, respectively. Define Mfirst

2A , Mdouble
2A , Msecond

3A , and
Mdouble

3A in a similar way.
As shown in the proof of Proposition 3,

∂xdouble
2
∂A

=−
Mdouble

11 (Mdouble
33 Mdouble

2A −Mdouble
23 Mdouble

3A )

detMdouble .

Since Mdouble = Msecond and Msecond
3A = Mdouble

3A at A = a,

∂xdouble
2
∂A

=−
Mdouble

11 Mdouble
33 Mdouble

2A
detMdouble +

Msecond
11 Msecond

23 Msecond
3A

detMsecond .

As shown in the proof of Proposition 2, ∂xsecond
2
∂A =

Msecond
11 Msecond

23 Msecond
3A

detMsecond , so

∂xdouble
2
∂A

=−
Mdouble

11 Mdouble
33 Mdouble

2A
detMdouble +

∂xsecond
2
∂A

. (48)

As Mdouble
31 = 0, note that

detMdouble =Mdouble
11 Mdouble

22 Mdouble
33 +Mdouble

12 Mdouble
23 Mdouble

31

−Mdouble
12 Mdouble

21 Mdouble
33 −Mdouble

11 Mdouble
23 Mdouble

32 .

Since ∂θ double
2
∂x2

=
Qx2(x

∗
1,x
∗
2,a,θ

∗)−Qx2(x̂
∗
1,x
∗
2,A,θ2)

Qθ2(x̂
∗
1,x
∗
2,A,θ2)

= 0 and hence Mdouble
12 = Mdouble

32 at
A = a,

detMdouble =Mdouble
11 Mdouble

22 Mdouble
33

+Mdouble
12 {Mdouble

23 (Mdouble
31 −Mdouble

11 )−Mdouble
21 Mdouble

33 }.

Since ∂θ double
2
∂x1

=
Qx1(x

∗
1,x
∗
2,a,θ

∗)
Qθ2(x̂

∗
1,x
∗
2,A,θ2)

and ∂θ double
2
∂ x̂1

=−Qx1(x̂
∗
1,x
∗
2,A,θ2)

Qθ2(x̂
∗
1,x
∗
2,A,θ2)

, Mdouble
11 =Mdouble

31 +

Mdouble
33 at A = a, and hence

detMdouble = Mdouble
33 {Mdouble

11 Mdouble
22 −Mdouble

12 (Mdouble
23 +Mdouble

21 )}.
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Then since Mdouble
11 =Mfirst

11 , Mdouble
22 =Mfirst

22 , Mdouble
12 =Mfirst

12 , and Mdouble
23 +Mdouble

21 =

Mfirst
21 at A = a,

detMdouble = Mdouble
33 detMfirst. (49)

Plugging this into (48) and using Mdouble
11 = Mfirst

11 and Mdouble
2A = Mfirst

2A ,

∂xdouble
2
∂A

=−
Mfirst

11 Mfirst
2A

detMfirst +
∂xsecond

2
∂A

=
∂xfirst

2
∂A

+
∂xsecond

2
∂A

.

Proof of Part (iii). We first prove the second equation. As shown in the proof
of Proposition 2,

∂xsecond
2
∂A

=
Msecond

11 Msecond
23 Msecond

3A
detMsecond .

From (49) and Msecond = Mdouble,

∂xsecond
2
∂A

=
Msecond

11 Msecond
23 Msecond

3A

Msecond
33 detMfirst

.

When the game is symmetric, we have Msecond
3A = Mfirst

2A . Also Msecond
11 = Mfirst

11 , so

∂xsecond
2
∂A

=−
Msecond

23

Msecond
33

∂xfirst
2

∂A
.

Then the result follows from Msecond
23 =Ui j−L and Msecond

33 =Uii−L.
The first equation in the proposition follows from this result and Proposition

2. The third equation in the proposition follows from part (ii) of this proposition.
We conclude the proof by showing the remaining two equations in the proposi-

tion. Let Li =
Qx1
Qθ

∂ 2Ui
∂xi∂θ

. When A1 = A2 = a, the multiplier effect on ∂x2
∂A2

appearing
in Proposition 4 can be rewritten as

1− U12−L1
U11

U21
U22−L2(

1− U12−L1
U11

U21
U22−L2

)(
1− U21−L2

U22

U12
U11−L1

)
−
(

L2
U22−L2

U12−L1
U11

− L1
U11

)(
L1

U11−L1

U21−L2
U22

− L2
U22

)
=

U22(U11−L1)(U11U22−U11L2−U21U12 +U21L1)

(U11U22−U11L2−U21U12 +U21L1)(U11U22−U22L1−U12U21 +U12L1)− (U12L1−U22L1)(U21L1−U11L2)
.
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When the game is symmetric, this reduces to

Uii(Uii−L)(Uii−Ui j)(Uii +Ui j−L)
(Uii−Ui j)2(Uii +Ui j−L)2−L2(Uii−Ui j)2

=
Uii(Uii−L)(Uii +Ui j−L)

(Uii−Ui j)(U2
ii +U2

i j +2UiiUi j−2UiiL−2Ui jL)

=
Uii(Uii−L)(Uii +Ui j−L)

(Uii−Ui j)(Uii +Ui j)(Uii +Ui j−2L)

=
U2

ii

U2
ii −U2

i j
·
(Uii−L)(Uii +Ui j−L)

Uii(Uii +Ui j−2L)

=
1

1−BR′1BR′2
·
(Uii−L)(Uii +Ui j−L)

Uii(Uii +Ui j−2L)

This and Proposition 4 imply the fourth equation in the proposition. Also, the last
equation follows from BR′12 = BR′42 =−

L
Uii

and BR′14 =−
Ui j
Uii

at A = a.

A.6 Proof of Corollary 2

Let Uii, Ui j, and L be as stated in Proposition 5. That is,

Uii =
∂ 2Ui

∂ 2xi
= 2Qx + xiQxx− c′′ < 0,

Ui j =
∂ 2Ui

∂xi∂x j
= Qx + xiQxx = Qx + xiQxx < 0,

L =
Qxi

Qθ

∂ 2Ui

∂xi∂θ
=

Qx

Qθ

(xiQxθ +Qθ )< 0.

Note that

Uii <Ui j < 0. (50)

Proof of part (i). First, consider the one-shot game with first-order misspecifi-
cation. A Nash equilibrium action solves the first-order condition

∂U1(x,a,θ ∗)
∂x1

= 0 and
∂U2(x,A,θ ∗)

∂x2
= 0.
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By the implicit function theorem, we have ∂x2
∂A = 1

1−BR′1BR′2
(−Md

2A
U22

) where Md
2A =

QA + x2QxA is the direct effect of misspecification on player 2’s marginal utility,
and BR′i is the slope of the standard best-response function.36 As explained in the
main text, the direct effect is positive. Also, (50) implies 1

1−BR′1BR′2
> 1. Hence,

we have ∂x2
∂A > 0. Firm 1 best-responds to this firm 2’s action, so ∂x1

∂A = BR′1
∂x2
∂A .

Since (50) implies BR′1 =−
U12
U11
∈ (−1,0), we have ∂x1

∂A < 0 and ∂x1
∂A + ∂x2

∂A > 0. For
payoffs, note that at A = a, we have

∂πi

∂A
=

∂πi

∂xi

∂xi

∂A
+

∂πi

∂x−i

∂x−i

∂A
=

∂πi

∂x−i

∂x−i

∂A
= xiQx

∂x−i

∂A
,

where the second inequality follows from the fact that πi is an equilibrium payoff
so that ∂πi

∂xi
= 0. This immediately implies ∂π1

∂A < 0, ∂π2
∂A > 0, and ∂π1

∂A + ∂π2
∂A > 0.

Second, consider the infinite-horizon model with first-order misspecification.
Since we assume that the base misspecification effect is positive, from Proposition
1 and 1

1−BR′1BR′2
> 1 at A = a, we have ∂x2

∂A > 0. The remaining inequalities can be
shown as in the one-shot game.

Third, consider the one-shot game with one-sided double misspecification.
Player 2 and the hypothetical player 1 plays a Nash equilibrium, which solves the
first-order condition

∂Û1(x̂1,x2,A,θ ∗)
∂ x̂1

= 0 and
∂U2(x̂1,x2,A,θ ∗)

∂x2
= 0. (51)

By the implicit function theorem, we have ∂x2
∂A = 1

1−BR′1BR′2
(−Md

2A
U22
−BR′2

Md
1A

U11
) =

1
1−BR′1BR′2

(−Md
2A

U22
)(1+BR′2) > 0 where Md

1A = QA + x̂1QxA = Md
2A. The remaining

inequalities follow as in the case with first-order misspecification.
Finally, consider the infinite-horizon game with one-sided double misspecifi-

cation. From (50) and Uii−L < 0, we have 1− Ui j−L
Uii−L =

Uii−Ui j
Uii−L > 0. Then Propo-

sition 5 and ∂xfirst
2

∂A > 0 imply ∂xdouble
2
∂A > 0. The remaining inequalities can be shown

as in the case with first-order misspecification.

36The asymptotic best response curve coincides with the standard best response curve at A = a,
so we use the same notation.
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Proof of part (ii). Consider the one-shot game with second-order misspecifi-
cation. Player 2 and the hypothetical player 1 plays a Nash equilibrium, which
solves the first-order condition

∂Û1(x̂1,x2,A,θ ∗)
∂ x̂1

= 0 and
∂U2(x̂1,x2,a,θ ∗)

∂x2
= 0.

By the implicit function theorem, we have ∂x2
∂A = 1

1−BR′1BR′2
(−BR′2

Md
1A

U11
)< 0. Then

the remaining inequalities follow as in the case with first-order misspecification.
Next, consider the infinite-horizon game with second-order misspecification.

Simple algebra shows that

Ui j−L =


< 0 if Qxθ

Qθ
< Qxx

Qx
,

= 0 if Qxθ

Qθ
= Qxx

Qx
,

> 0 if Qxθ

Qθ
> Qxx

Qx
.

Then, Proposition 5, Uii−L < 0, and ∂xfirst
2

∂A > 0 imply the result.
Proof of part (iii). Consider the one-shot game with two-sided double mis-

specification. Player 1 is not aware of player 2’s bias, so she chooses the Nash
equilibrium xcorrect

1 regardless of the parameter A2. Player 2 and the hypothetical
player 1 play a Nash equilibrium which solves the first-order condition (51), and
as shown in part (i), we have ∂x2

∂A > 0.
Next, consider the infinite-horizon game. Define NE ′i as in Proposition 4.

Note that x1 = x2 = x̂1 = x̂2 = x∗ constitutes the steady state at A1 = A2 = a. A
necessary condition for the unique steady state is |NE ′1NE ′2| = |NE ′i |2 ≤ 1 at x∗;
otherwise, as discussed in the proof of Proposition 1, there exist multiple steady
states. Also, det M , 0 implies |NE ′i |2 , 1. So for a steady state to be unique, we
must have |NE ′i |2 < 1 at x∗, which implies NE ′i ∈ (−1,1) at x∗. At x∗,

NE ′i =−
∂ 2Ui

∂xi∂θi

∂θi
∂x j

Uii +Ui j +
∂ 2Ui

∂xi∂θi

(
∂θi
∂xi

+ ∂θi
∂x j

)=− L
Uii +Ui j−L

.

Because Uii− L < 0 and Ui j < 0, the condition NE ′i ∈ (−1,1) is equivalent to
Uii+Ui j−L< L<−(Uii+Ui j−L). The first inequality implies Uii+Ui j−2L< 0.

Then, Proposition 5 and ∂xfirst
2

∂A > 0 imply the result. Q.E.D.
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A.7 Proof of Corollary 3

Let Uii, Ui j, and L be as stated in Proposition 5. That is,

Uii =
∂ 2Ui

∂ 2xi
= Qxixi− c′′(xi),

Ui j =
∂ 2Ui

∂xi∂x j
= Qx1x2,

L =
Qxi

Qθ

∂ 2Ui

∂xi∂θ
=

Qxi

Qθ

Qxiθ .

Suppose that A = a. From Proposition 1, we have BR′1BR′2 < 1 at the unique
steady state xcorrect. Recall that at A = a, BR′i is simply the slope of the best
response curve in the standard sense. So by symmetry, we have BR′1 = BR′2, which
in turn implies |BR′i|= |

Ui j
Uii
|< 1. Note also that Uii < 0, because the second-order

condition for the incentive-compatibility condition must be satisfied according
to the regularity condition imposed in Proposition 1. Taken together, we have
Uii <Ui j.

Proof of part (i). The result for the one-shot game can be shown as in the
proof of Corollary 2. So we will prove only the result for the infinite-horizon
game. Since the base misspecification effect is negative, we have ∂x2

∂A < 0 under
first-order misspecification. Also, since Uii < 0, L > 0, and Uii <Ui j, we have

1−
Ui j−L
Uii−L

=
Uii−Ui j

Uii−L
> 0.

Then from Proposition 5, we have ∂x2
∂A < 0 even under one-sided double misspec-

ification. The remaining inequalities can be shown as in the proof of Corollary
2.

Proof of part (ii). Again, we will prove only the result for the infinite-horizon
game. If Qx1x2 > L as stated in (a), then

0 <−
Ui j−L
Uii−L

< 1.

Here the first inequality follows from Uii < 0, L > 0, and Ui j−L = Qx1x2−L > 0,
and the second inequality follows from Uii < 0, L > 0, and |Ui j

Uii
| < 1. Then from

Proposition 5, ∂x2
∂A < 0 under second-order misspecification.
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On the other hand, if Qx1x2 < L as stated in (b) and (c), then

−
Ui j−L
Uii−L

< 0.

Hence ∂x2
∂A > 0 under second-order misspecification. The remaining inequalities

can be shown as in the proof of Corollary 2.
The proof of part (iii) is also similar to that of corollary 2. Q.E.D.

A.8 Proof of Lemma 1

For the case in which X is finite, this is exactly the same as Lemma 1 of Esponda,
Pouzo, and Yamamoto (2019). For the case in which X is continuous, we need a
minor modification of the proof. We first prove a preliminary lemma:

Lemma 3. Assume that X is continuous. Under Assumption 1(iii) and (iv),
∫

Y g(x,y)Q(dy|x)
is bounded and continuous in x.

Proof. Take a sequence xn converging to x. Then∫
Y

g(xn,y)Q(dy|xn)−
∫

Y
g(x,y)Q(dy|x)

≤
∣∣∣∣∫Y

g(xn,y)Q(dy|xn)−
∫

Y
g(xn,y)Q(dy|x)

∣∣∣∣
+

∣∣∣∣∫Y
g(xn,y)Q(dy|x)−

∫
Y

g(x,y)Q(dy|x)
∣∣∣∣ .

From Assumption 1(iii), Q(dy|xn) weakly converges to Q(dy|x), so the first term
of the right-hand side converges to zero. Also from Assumption 1(iv-a), g(xn,y)
pointwise converges to g(x,y), so the second term converges to zero. Q.E.D.

As shown in the display in EPY, we have

Ki,k(θ
n
i,k,σ

n)−Ki(θ
n
i,k,σ)≤

∫
X

∫
Y

g(x,y)Q(dy|x)σn
X̂1,1×X̂2,1

(dx)

−
∫

X

∫
Y

g(x,y)Q(dy|x)σX̂1,1×X̂2,1
(dx)

where σX̂1,1×X̂2,1
and σn

X̂1,1×X̂2,1
are the marginals of σ and σn on X̂1,1× X̂2,1, re-

spectively. From Lemma 3, the right-hand side converges to zero as σn→ σ . The
rest of the proof is exactly the same as in EPY.
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A.9 Proof of Proposition 6

For the special case in which X is finite, Theorem 1 of Esponda, Pouzo, and
Yamamoto (2019) proves the same result. We need a minor modification to their
proof, as they use finiteness of X in Step 2 in the proof of Lemma 2.

Pick i, k, θi,k. Then let

fl(x̂) = EQ(·|x̂1,1,x̂2,1)

 sup
θ ′i,k∈O(θi,k,

1
l )

∣∣∣∣∣ q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
−

q(y|x̂1,1, x̂2,1)

qθ ′i,k
(y|x̂i,k, x̂i,k+1)

∣∣∣∣∣


where O(θi,k,
1
l ) is a 1

l -neighborhood of θi,k. Then as explained at the end of the
the first paragraph in EPY’s step 2, liml→∞ fl(x̂)→ 0 for each x̂. In what follows,
we will show that this convergence is uniform in x̂; then there is δ (θi,k,ε) with
which (16) of EPY holds, and the rest of the proof is exactly the same as EPY’s.

Pick an arbitrary ε > 0. For each x̂, let F(x̂) = {l ∈ [0,∞)| fl(x̂) ≥ ε}. Then
we have the following lemma:

Lemma 4. For each x̂, there is l(x̂) > 0 such that F(x̂) = [0, l(x̂)]. Also F(x̂) is
upper hemi-continuous in x̂.

Proof. The first part follows from the fact that fl(x̂) is continuous and decreasing
in l, and liml→∞ fl(x̂) = 0.

To prove the second part, pick x̂ and an arbitrary small η > 0. Then fl(x̂)+η(x̂)<
ε . Since fl(x̂) is continuous in x̂, there is an open neighborhood U of x̂ such
that fl(x̂)+η(x̂′) < ε for all x̂′ ∈ U . This implies that l(x̂′) < l(x̂) + η for all
x̂′ ∈U . Q.E.D.

The above lemma implies that l(x̂) is an upper hemi-continuous function, and
from the Maximum theorem, l(x̂) is bounded; l(x̂)< l∗ for some l∗. Hence fl(x̂)≤
ε for all x̂ and l ≥ l∗, implying uniform convergence.

A.10 Proof of Proposition 8

This is very similar to the first step of the proof of Proposition 2 in EPY. However,
we need a minor modification, as X may not be finite in our setup. We first prove
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upper hemi-continuity of Bε(σ).

Lemma 5. Bε(σ) is upper hemi-continuous in (ε,σ).

Proof. Since ∏
2
i=1 ∏

ki+1
k=1 4Θi,k is compact, it is sufficient to show that (εn,σn, µ̂n)→

(ε,σ , µ̂) and µ̂n ∈ Bεn(σn) for each n imply µ̂ ∈ Bε(σ). Note that

lim
n→∞

(∫
Θi,k

(Ki,k(θi,k,σ
n)µ̂n

i,k(dθi,k)−
∫

Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k)

)
= lim

n→∞

(∫
Θi,k

(Ki,k(θi,k,σ
n)µ̂n

i,k(dθi,k)−
∫

Θi,k

(Ki,k(θi,k,σ)µ̂n
i,k(dθi,k)

)
+ lim

n→∞

(∫
Θi,k

(Ki,k(θi,k,σ)µ̂n
i,k(dθi,k)−

∫
Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k)

)
.

The first term of the right-hand side is zero, because Ki,k(·,σn) pointwise con-
verges to Ki,k(·,σ) (which follows from the fact that σn weakly converges to σ ).
Also the second term of the right-hand side is zero, as µn

i,k weakly converges to
µi,k.

lim
n→∞

∫
Θi,k

(Ki,k(θi,k,σ
n)µ̂n

i,k(dθi,k) =
∫

Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k).

Since µ̂n ∈ Bεn(σn),∫
Θi,k

(Ki,k(θi,k,σ
n)−K∗i,k(σ

n))µ̂n
i,k(dθi,k)≤ ε

n.

Taking n→ ∞ and using continuity of K∗i,k(σ) (which follows from the theory of
maximum), ∫

Θi,k

(Ki,k(θi,k,σ)−K∗i,k(σ))µ̂i,k(dθi,k)≤ ε.

Hence µ ∈ Bε(σ), which implies upper hemi-continuity of Bε(σ). Q.E.D.

Now we show that Sε(σ) is upper hemi-continuous at ε = 0. Since X is com-
pact, it suffices to show that (εn,σn,xn)→ (0,σ ,x) and xn ∈ Sεn(σn) for each n,
imply x ∈ Sε(σ). As noted earlier, we already know that S0(σ) is upper hemi-
continuous in σ . So without loss of generality, we assume εn > 0 for all n.
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Since xn ∈ Sεn(σn), there is µ̂n ∈ Bεn(σn) with xn = ŝ(µ̂n). The sequence
(εn,σn,xn, µ̂n) is in a compact set, so there is a convergent subsequence, still
denoted by (εn,σn,xn, µ̂n). Let µ̂ = limn→∞ µ̂n. Then µ̂ ∈ B0(σ), as Bε(σ) is
upper hemi-continuous and µ̂n ∈ Bεn(σn) for each n. Also, we have x ∈ Ŝ(µ̂),
because Ŝ is upper hemi-continuous and xn ∈ Ŝ(µ̂n) for each n. Hence x ∈ S0(σ).

A.11 Proof of Proposition 9

The proof is very similar to that of Theorem 2 of EPY. In EPY, the proof consists
of three steps. In the first two steps, they show that w is a perturbed solution of the
differential inclusion. Then in the last step, they show that a perturbed solution is
an asymptotic pseudotrajectory (i.e., it satisfies (33)).

Our Propositions 7 and 8 imply that w is indeed a perturbed solution in the
sense of EPY. We can also show that a perturbed solution is indeed an asymptotic
pseudotrajectory. The proof is omitted because, other than replacing the Euclidean
norm with the dual bounded-Lipschitz norm, it is exactly the same as the last step
of EPY.37

A.12 Proof of Lemma 2

We will show that θ(σ) is Lipschitz continuous in σ . Under Assumptions 4(i) and
(iii), the inverse (∇2Ki,k(θi,k(σ),σ))−1 of the Hessian matrix exists for each σ ,
and is continuous in σ . This means that ‖(∇2Ki,k(θi,k(σ),σ))−1‖ is bounded and
continuous in σ , where ‖C‖ = maxi j |ci j| denotes the max norm of a matrix C =

{ci j}, . Since4X̂ is compact, there is L1 such that ‖(∇2Ki,k(θi,k(σ),σ))−1‖< L1

for all i, k, and σ . Pick such L1.
37This parallels Perkins and Leslie (2014), who show that the stochastic approximation tech-

nique of Benaı̈m (1999) for the Euclidean space extends to Banach spaces with the same proof.
Our result differs from Perkins and Leslie (2014) in that we consider a differential inclusion, rather
than a differential equation. But this does not cause any technical difficluty, because (i) 4X̂ is a
compact subset of a banach space with the dual bounded Lipschitz norm and (ii) Mazur’s lemma,
which is used to establish the result for differential inclusions in Euclidean spaces (Benaı̈m, Hof-
bauer, and Sorin (2005) and EPY), is valid even in Banach spaces.
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Under Assumption 4(ii), there is L2 > 1 such that∣∣∣∣∂Ki,k(θi,k, x̂)
∂θi,k,m

−
∂K(θi,k, x̂′)

∂θi,k,m

∣∣∣∣< L2|x̂− x̂′|

for all i, k, m, θi,k, x̂, and x̂′. Also, under Assumption 4(i), there is L3 > 1 such
that ∣∣∣∣∂Ki,k(θi,k, x̂)

∂θi,k,m

∣∣∣∣< L3

for all i, k, m, θi,k, and x̂. Then for each σ and σ ′, we have∣∣∣∣∂Ki,k(θi,k,σ)

∂θi,k,m
−

∂Ki,k(θi,k,σ
′)

∂θi,k,m

∣∣∣∣
=

∣∣∣∣∫ ∂Ki,k(θi,k, x̂)
∂θi,k,m

σ(dx̂)−
∫

∂Ki,k(θi,k, x̂)
∂θi,k,m

σ
′(dx̂)

∣∣∣∣≤ 4L2L3‖σ −σ
′‖

where the inequality follows from the definition of the dual bounded-Lipschitz
norm and the fact that 1

4L2L3

∂Ki,k(θi,k,x̂)
∂θi,k,m

∈BL(X̂). This in turn implies that ∇Ki,k(θi,k,σ)

is equi-Lipschitz continuous, that is, there is L4 > 0 such that |∇Ki,k(θi,k,σ)−
∇Ki,k(θi,k,σ

′)|< L4‖σ −σ ′‖ for all i, k, θi,k, σ , and σ ′.
Let L = L1L4. We will show that θ(σ) is Lipschitz continuous with the con-

stant L. To do so, pick two action frequencies σ and σ ′ , σ arbitrarily. For
each β ∈ [0,1], let σβ = βσ +(1−β )σ ′ denote a convex combination of σ and
σ ′. From Assumption 4(iii), the KL minimizer θi,k(σβ ) must solve the first-order
condition

∇Ki,k(θi,k,σβ ) = 0,

which is equivalent to

β∇Ki,k(θi,k,σ)+(1−β )∇Ki,k(θi,k,σ
′) = 0.

Then by the implicit function theorem,

dθ(σβ )

dβ
=−(∇2Ki,k(θi,k(σβ ),σβ ))

−1 (
∇Ki,k(θi,k(σβ ),σ)−∇Ki,k(θi,k(σβ ),σ

′)
)
.

(52)
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Using the fundamental theorem of calculus, we have

θ(σ)−θ(σ ′)

= θ(σ1)−θ(σ0)

=−
∫ 1

0
(∇2Ki,k(θi,k(σβ ),σβ ))

−1 (
∇Ki,k(θi,k(σβ ),σ)−∇Ki,k(θi,k(σβ ),σ

′)
)

dβ .

Then by the definition of L1 and L4,

|θ(σ)−θ(σ̃)| ≤
∫ 1

0
L1L4‖σ −σ

′‖dβ = L‖σ −σ
′‖,

as desired.

A.13 Proof of Proposition 12

We will first present a preliminary lemma. Pick an arbitrary action frequency
σ(0) ∈ 4X̂ and a solution σ ∈ Z(σ(0)) to the differential inclusion (33) starting
from this σ(0). Let θ(t) = θ(σ(t)) for each t. The following lemma shows that
{θ(t)}t≥0 solves (34).

Lemma 6. Pick t ≥ 0 such that (33) holds. Then θ̇(t) exists and satisfies (34).

Proof. Pick t as stated, and pick σ∗ ∈4S0(σ(t)) such that σ̇(t) = σ∗−σ(t). Let
σβ = βσ∗+(1−β )σ(t) for each β ∈ [0,1]. Then we have

θ(σ(t + ε))−θ(σ(t))
ε

=

(
θ(σε)−θ(σ0)

ε
+

θ(σ(t + ε))−θ(σε)

ε

)
.

All we need to show is that the right-hand side has a limit as ε → 0, and the limit
is in the right-hand side of (34). Then θ(σ(t+ε))−θ(σ(t))

ε
also has a limit θ̇(t) and

this limit value satisfies (34).
Note first that limε→0

θ(σε )−θ(σ0)
ε

exists and is in the right-hand side of (34).
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Indeed, from (52),

lim
ε→0

θ(σε)−θ(σ0)

ε

=
dθ(σβ )

dβ

∣∣∣∣
β=0

=−(∇2Ki,k(θi,k(σ0),σ0))
−1 (

∇Ki,k(θi,k(σ0),σ1)−∇Ki,k(θi,k(σ0),σ0)
)

=−(∇2Ki,k(θi,k(σ(t)),σ(t)))−1 (
∇Ki,k(θi,k(σ(t)),σ∗)

)
where the second equality follows from the fact that θi,k(σ0) solves the first-order
condition.

We conclude the proof by showing that limε→0
θ(σ(t+ε))−θ(σε )

ε
= 0. Since

θ(σ) is Lipschitz continuous, there is L > 0 such that∣∣∣∣θ(σ(t + ε))−θ(σε)

ε

∣∣∣∣≤ L
∥∥∥∥σ(t + ε))−σε

ε

∥∥∥∥
= L

∥∥∥∥(σ(t + ε))−σ(t))− (σε −σ0)

ε

∥∥∥∥ .
Taking ε → 0,

lim
ε→0

∣∣∣∣θ(σ(t + ε))−θ(σε)

ε

∣∣∣∣= L
∥∥∥∥ lim

ε→0

σ(t + ε)−σ(t)
ε

− lim
ε→0

σε −σ0

ε

∥∥∥∥
= L

∥∥∥∥∥dσ(t)
dt
−

dσβ

dβ

∣∣∣∣
β=0

∥∥∥∥∥= 0

Q.E.D.

Now we prove the proposition. Pick T > 0 and h ∈H arbitrary. Pick any
small ε > 0. Since θ(σ) is uniformly continuous in σ (this follows from the
continuity of θ and the compactness of 4X̂), there is η > 0 such that |θ(σ)−
θ(σ̃)| < ε for any σ and σ̃ with ‖σ − σ̃‖ < η . From Proposition 9, there is t∗

such that for any t > t∗, there is σ ∈ Z(w(h)[t]) such that

‖w(h)[t + τ]−σ(τ)‖< η
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for all τ ∈ [0,T ]. Pick such σ, and consider the corresponding θ, i.e., let θ(t) =
θ(σ(t)) for each t. Then by the definition of η , we have

‖wθ (h)[t + τ]−θ(τ)‖< ε

for all τ ∈ [0,T ]. Also this θ solves (34).38 This implies the result we want.

A.14 Proof of Proposition 13

Pick an arbitrary sample path h ∈H . Let (i,k) ∈ I∗∗ \ I∗. Throughout the proof,
for each θi,k, let θ(θi,k) denote θ such that θ j,l = θi,k for all ( j, l) ∈ I(i,k) and
θ j,l = θ ∗j,l for all ( j, l) ∈ I∗.

We will show that limt→∞ d(θ t
i,k(h),Ei,k) = 0, where Ei,k is the set of agent

(i,k)’s steady state model, i.e., Ei,k is the set of all θi,k such that K′i,k(θi,k,σ
′) = 0

for some σ ′ ∈4S0(θ(θi,k)). There are two cases to be considered.

A.14.1 Case 1: liminft→∞ θ t
i,k(h) , limsupt→∞ θ t

i,k(h).

In this case, we will show that [liminft→∞ θ t
i,k(h), limsupt→∞ θ t

i,k(h)] ⊆ Ei,k. This
immediately implies limt→∞ d(θ t

i,k(h),Ei,k) = 0.
Suppose not, so that there is a model θi,k ∈ [liminft→∞ θ t

i,k(h), limsupt→∞ θ t
i,k(h)]

such that θ ∗i,k < Ei,k. Then (i) K′i,k(θ
∗
i,k,σ

′) > 0 for all σ ′ ∈ 4S0(θ(θ
∗
i,k)), or (ii)

K′i,k(θ
∗
i,k,σ

′)< 0 for all σ ′ ∈4S0(θ(θ
∗
i,k)). Indeed, if not and there are two mea-

sures σ ′,σ ′′ ∈4S0(θ(θ
∗
i,k)) with K′i,k(θ

∗
i,k,σ

′)> 0 and K′i,k(θ
∗
i,k,σ

′′)< 0, then by
mixing σ ′ and σ ′′ we can construct σ∗ ∈ 4S0(θ(θ

∗
i,k)) with K′i,k(θ

∗
i,k,σ

∗) = 0,
which is a contradiction. In what follows, we will focus on the case (i), where
K′i,k(θ

∗
i,k,σ

′)> 0 for all σ ′ ∈4S0(θ(θ
∗
i,k)). The proof for the case (ii) is symmet-

ric.
Since K′i,k(θi,k,σ) is continuous in (θi,k,σ) and 4S0(θ(θi,k)) is upper hemi-

continuous in θi,k, there is ε > 0 such that K′i,k(θi,k,σ
′)> 0 for any θi,k with |θi,k−

38Note that θ is absolutely continuous because σ is absolutely continuous and θ(σ) is Lipschitz
continuous. Also from Lemma 6, θ satisfies (34) for almost all t.
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θ ∗i,k| ≤ ε and any σ ′ ∈4S0(θ(θi,k)). Pick such ε > 0. Then pick T such that

θi,k(t)≥ θ
∗
i,k + ε (53)

for any t ≥ T and for any solution θ∈ Zθ (θ(θi,k)) with any θi,k with θi,k ≥ θ ∗i,k−ε .
From Proposition 12, there is t∗ such that for any t > t∗, θ ∈ Zθ (wθ (t)), and

s ∈ [0,2T ],

|wθ ,i,k(t + s)−θi,k(s)|<
ε

2
(54)

where wθ ,i,k denote the (i,k)-component of wθ . Pick such t∗. Since θ ∗i,k≤ limsupt→∞ θ t(h),
there is t∗∗ > t∗ such that wθ ,i,k(t∗∗)≥ θ ∗i,k−ε . Pick such t∗∗. Then from (53), we
have

θi,k(s)≥ θ
∗
i,k + ε

for any s ≥ T and for any solution θ ∈ Zθ (wθ (t∗∗)). This inequality and (54)
implies

wθ ,i,k(t∗∗+ s)≥ θ
∗
i,k +

ε

2
∀s ∈ [T,2T ].

Likewise, since wθ ,i,k(t∗∗+T )≥ θ ∗i,k +
ε

2 , it follows from (53) that

θi,k(s)≥ θ
∗
i,k + ε

for any s≥ T and for any solution θ ∈ Zθ (wθ (t∗∗+T )). This inequality and (54)
implies

wθ ,i,k(t∗∗+ s)≥ θ
∗
i,k +

ε

2
∀s ∈ [2T,3T ].

Iterating this argument, we can show that

wθ ,i,k(t∗∗+ s)≥ θ
∗
i,k +

ε

2
∀s ∈ [T,∞).

But this means that liminft→∞ θ t
i,k(h)≥ θ ∗i,k +

ε

2 , which is a contradiction.

A.14.2 Case 2: liminft→∞ θ t
i,k(h) = limsupt→∞ θ t

i,k(h).

In this case, limt→∞ θ t
i,k(h) exists. Let θ ∗i,k = limt→∞ θ t

i,k(h). We will show that
θ ∗i,k ∈ E.
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Suppose not so that θ ∗ < E. Then as in the previous case, (i) K′i,k(θ
∗
i,k,σ

′)> 0
for all σ ′ ∈ 4S0(θ(θ

∗
i,k)), or (ii) K′i,k(θ

∗
i,k,σ

′) < 0 for all σ ′ ∈ 4S0(θ(θ
∗
i,k)). We

will focus on the case (i).
As in the previous case, there is ε > 0 such that K′i,k(θi,k,σ

′) > 0 for any θi,k

with |θi,k− θ ∗i,k| ≤ ε and any σ ′ ∈ 4S0(θ(θi,k)). Pick such ε > 0. Then pick T
such that (53) holds for any t ≥ T and for any solution θ ∈ Zθ (θ(θi,k)) with any
θi,k with θi,k ≥ θ ∗i,k− ε .

From Proposition 12, there is t∗ such that (54) holds for any t > t∗, θ ∈
Z′

θ
(wθ (t)), and s ∈ [0,2T ]. Pick such t∗. Since θ ∗i,k = limt→∞ θ t(h), there is

t∗∗ > t∗ such that wθ ,i,k(t∗∗) ≥ θ ∗i,k− ε . Pick such t∗∗. Then as in the previous
case, we can show that

wθ ,i,k(t∗∗+ s)≥ θ
∗
i,k +

ε

2
∀s ∈ [T,∞).

But this means that limt→∞ θ t
i,k(h)≥ θ ∗i,k +

ε

2 , which is a contradiction.

A.15 Proof of Proposition 14

By assumptions (i)-(iii), it is obvious that the graphs {(θ2, f̂1(θ2,A))|∀θ2} and
{(θ̂1, f2(θ̂1,A))|∀θ̂1} intersect once. This immediately implies that there is a
steady state and it is unique. So what remains is to show that the belief converges
to this steady state almost surely.

Recall that under second-order misspecification, there are three players: Player
1, player 2, and the hypothetical player.39 Let σ = (σ1,σ2, σ̂1) denote an action
frequency of these players. Given σ , let K1(θ1,σ) denote the weighted KL di-
vergence between player 1’s subjective signal distribution and the true distribu-
tion, and let θ1(σ) denote the minimizer of this KL divergence. Similarly define
K2(θ2,σ), θ2(σ), K̂1(θ̂1,σ), and θ̂1(σ).

Since player 1 is unbiased, we have θ1(σ) = θ ∗ for all σ , which implies that
θ t

1 is constant over time and θ t
1 = θ ∗ for all t. On the other hand, θ t = (θ t

2, θ̂
t
1)

39Formally, in the game with second-order misspecification, we have k1 = 3, k2 = 2, M2,1 =

M1,2, and M2,2 = M1,3. Agents (1,2) and (1,3) are redundant, so I∗∗ = {(1,1),(2,1),(2,2)}.
Agent (1,1) is player 1, agent (2,1) is player 2, and agent (2,2) is the hypothetical player.
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changes as time goes, and our Proposition 12 ensures that the motion of this θ t is
approximated by the differential inclusion (35), which can be rewritten as the two
dimensional problem(

dθ2(t)
dt

,
dθ̂1(t)

dt

)
∈

⋃
σ :θ(σ)=θ(t)

⋃
σ ′∈4S∗0(θ(t))

(
−

K′2(θ2(t),σ
′)

K′′2 (θ2(t),σ)
,−

K̂′1(θ̂1(t),σ
′)

K̂′′1 (θ̂1(t),σ)

)
(55)

where S∗0(θ) denote the set of all one-shot equilibrium x = (x1,x2, x̂1) given the
beliefs θ1 = θ ∗ and θ = (θ2, θ̂1).

In what follows, we will show that regardless of the initial value, any solution
to the differential inclusion (55) converges to the steady state after a long time.
This implies that the steady state is globally attracting in the sense of Esponda,
Pouzo, and Yamamoto (2019), and their Proposition 2 ensures that θ t converges
to the steady state almost surely, as desired.

The following lemma partially characterizes the solution to the differential
inclusion (55): It shows that θ2(t) moves toward f2(θ̂1(t),A) at any time t.

Lemma 7. Pick any initial value θ(0) and any solution θ to the differential inclu-
sion (55). Then for any t ≥ 0 with θ2(t)> f2(θ̂1(t)), we have θ̇2(t)< 0. Similarly,
for any t ≥ 0 with θ2(t)< f2(θ̂1(t)), we have θ̇2(t)> 0

Proof. Suppose that θ2(t) > f2(θ̂1(t),A) at some time t. To prove θ̇2(t) < 0, it
suffices to show that K′2(θ2(t),σ

′)> 0 for any σ ′ ∈4S∗0(θ(t)).
Suppose not and there is σ ′ ∈ 4S∗0(θ(t)) such that K′2(θ2(t),σ

′) < 0. (We
ignore the case with K′2(θ2(t),σ

′) = 0, because in such a case, θ2(t)∈ f2(θ̂1(t),A),
which contradicts with the uniqueness of f2(θ̂1(t),A).) We consider the following
two cases:

Case 1: θ2(t)= θ . In this case, the KL minimizer given this σ ′ is θ2(σ
′)= θ =

θ2(t) (this follows from the fact that the KL divergence is single-peaked w.r.t. θ2).
Hence θ2(t) = θ is a steady state, i.e., θ2(t) ∈ f2(θ̂1(t),A). But this contradicts
with the uniqueness of f2(θ̂1(t),A).

Case 2: θ2(t) < θ . An argument similar to that in Case 1 shows that at
θ2 = θ , we have K′2(θ ,σ

′) > 0 for all σ ′ ∈ 4S∗0(θ , θ̂1(t)). On the other hand,
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by the assumption, at θ2 = θ2(t), K′2(θ2(t),σ
′) < 0 for some σ ′ ∈ 4S∗0(θ(t)).

Then since the set {K′2(θ2,σ
′)|∀σ ′ ∈ 4S∗0(θ2, θ̂1(t))} is convex and upper hemi-

continuous in θ2, there must be θ2 ∈ [θ2(t),θ ] and σ ′ ∈ 4S∗0(θ2, θ̂1(t)) such that
K′2(θ2(t),σ

′) = 0. This implies that θ2 ∈ f2(θ̂1,A), but it contradicts with the
uniqueness of f2(θ̂1,A).

Next, suppose that θ2(t) < f2(θ̂1(t),A) at some time t. Then an argument
similar to the one above shows that K′2(θ2(t),σ

′) < 0 for any σ ′ ∈ 4S∗0(θ(t)),
which implies θ̇2(t)> 0. Q.E.D.

Now we will construct a Lyapunov function V to show that any solution to the
differential inclusion (55) converges to the steady state. Without loss of generality,
assume that the steady state is θ ∗= (θ ∗2 , θ̂

∗
1 ) = (0,0). From assumption (iii), there

is κ > 0 such that max
θ̂1
| f2(θ̂1,A)

∂ θ̂1
|< κ < 1

maxθ2 |
f̂1(θ2,A)

∂θ2
|
. Pick such κ , and for each

θ = (θ2, θ̂1), let
V (θ) = max

{
|θ2|, |κθ̂1|

}
.

We will show that given any initial value θ(0) and given any solution θ to the
differential inclusion (34),

V̇ (θ(t))< 0

for all t with θ(t) , (0,0). We will consider the following cases separately:
Case 1: |θ2(t)|> |κ θ̂1(t)|. Assume first that θ2(t)> 0. Then by the definition

of κ and f2(0) = 0, we have f2(θ̂1(t)) < |κ θ̂1(t)| < θ2(t). Then from Lemma 7
and θ2(t)> 0, we have V̇ (θ(t)) = θ̇2(t)< 0.

Assume next that θ2(t) < 0. By the definition of κ and f2(0) = 0, we have
f2(θ̂1(t)) > −|κ θ̂1(t)| > θ2(t). Then from Lemma 7 and θ2(t) < 0, we have
V̇ (θ(t)) =−θ̇2(t)< 0.

Case 2: |θ2(t)|< |κ θ̂1(t)|. An argument similar to those for Case 1 shows that
V̇ (θ(t))< 0.

Case 3: |θ2(t)| = |κ θ̂1(t)|. We will focus on the case with θ2(t) > 0 and
θ̂1(t) > 0, because a similar argument applies to all other cases. Then as in the
first half of Case 1, we have θ̇2(t) < 0. Also, a similar argument shows that
˙̂θ1(t)< 0. Hence we have V̇ (θ(t)) = {θ̇2(t),κ ˙̂θ1(t)}< 0.
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A.16 Proof of Proposition 15

The result immediately follows from the following lemma:

Lemma 8. Suppose that all the assumptions stated in Proposition 15 are satisfied.
Then for any sample path h ∈H ,

(i) liminft→∞ θ i,k(σ
t(h))≥ θ ∗i,k.

(ii) limsupt→∞ θ i,k(σ
t(h))≤ θ ∗i,k.

In what follows, we will prove this lemma. We will focus on part (i), because
the proof of part (ii) is symmetric.

We begin with stating two preliminary lemmas. The first lemma considers the
case in which the current action frequency has a unique KL minimizer θ t

i,k, and
shows that if the current KL minimizer θ t

i,k is lower than the steady state belief
θ ∗i,k, then today’s action S0(θ

t
i,k) induces a higher KL minimizer. This implies

that the KL minimizer tomorrow will be closer to the steady state belief than the
current one. Likewise, if the current KL minimizer is higher than the steady state
belief, then today’s action induces a lower KL minimizer.

Lemma 9. θi,k(S0(θ̃i,k)) > θ̃i,k for all θ̃i,k < θ ∗i,k, and θi,k(S0(θ̃i,k)) < θ̃i,k for all
θ̃i,k > θ ∗i,k.

Proof. Note that θi,k(S0(·)) is a continuous mapping from Θi,k ⊆ R to itself, and
its fixed point is a steady state. Since there is a unique steady state, the result
follows from a standard argument. Q.E.D.

The next lemma considers the case in which the current action frequency need
not have a unique minimizer, and shows that the result similar to the previous
lemma holds; very roughly, if the smallest KL minimizer θ(θ t

i,k) is lower than the
steady state belief, then it will move up and approaches the steady state belief.
The proof is omitted, as it is very similar to Lemma 4 of Esponda, Pouzo, and
Yamamoto (2019).
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Lemma 10. Pick any θi,k < θ ∗i,k and any σ such that σ j,l =σ j̃,l̃ for each ( j, l)∈ I∗∗

and ( j̃, l̃)∈ I( j, l) and such that Ki,k(θi,k,σ)< Ki,k(θ̃i,k,σ) for all θ̃i,k < θi,k. Then
for any solution σ ∈ Z(σ) starting from this σ , we have θ i,k(σ(t)) > θ for all
t > 0.

Now we will prove Lemma 8. Suppose not, so that there is a sample path h ∈
H such that liminft→∞ θ i,k(σ

t(h))< θ ∗i,k. Pick such h, and let θ 0
i,k = liminft→∞ θ i,k(σ

t(h)).
Let w : [0,∞)→4X denote the continuous-time interpolation of the action fre-
quency (σ t(h))∞

t=1.
Pick ε > 0 such that

∂Ki,k(θi,k,σ)

∂θi,k
< 0 ∀θi,k ≤ θ

0
i,k + ε (56)

for all σ such that

σ

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1−2ε.

To see why such ε exists, note first that from Lemma 9 and Assumption (iv) of
Proposition 15, θi,k(S0(θ̃i,k))> θ 0

i,k for all θ̃i,k ≥ θ 0
i,k. Since θi,k(S0(·)) is continu-

ous, for any small ε , we have θi,k(S0(θ̃i,k))> θ 0
i,k +2ε for all θ̃i,k ≥ θ 0

i,k−ε . Then
from Assumptions (iv) and (v) of Proposition 15, we have θi,k(x) > θ 0

i,k + 2ε for
all σ such that θ i,k(σ) ≥ θ 0

i,k− ε and for all x ∈ S0(σ). Then from the single-
peakedness assumption, (56) holds for all σ such that

σ

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

= 1.

This inequality does not change even if σ is perturbed, so ε satisfies the desired
property. (Take ε small, if necessary.)

Pick T > 0 such that 1
1+T < ε . Then pick t∗ > 0 such that for all t > t∗,

sup
s∈[0,2T ]

inf
σ∈Z(w(t))

|σ(s)−w(t + s)|< ε. (57)
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Pick t > t∗ such that θ i,k(w(t)) is in the ε-neighborhood of θ 0
i,k. Pick any

solution σ ∈ Z(w(t)) to the differential inclusion starting from this w(t). Then
from Lemma 10 (we set θi,k = θ i,k(w(t))), we have θ i,k(σ(s)) > θ i,k(w(t)) >
θ 0

i,k− ε for all s > 0. So in this solution σ, the share of the set of action profiles⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε
S0(σ̃) increases over time. In particular, by the definition of T ,

we have

σ(s)

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1− ε ∀s≥ T.

Then from (57), we have

w(t + s)

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1−2ε ∀s ∈ [T,2T ].

This and (56) imply

∂Ki,k(θi,k,w(t + s))
∂θi,k

< 0 ∀θi,k ≤ θ
0
i,k + ε∀s ∈ [T,2T ].

Now consider a solution σ′ to the differential inclusion starting from w(t0 +T ).
Then again from Lemma 10 (we set θi,k = θ 0

i,k+ε), we have θ i,k(σ(s))> θ 0
i,k+ε >

θ 0
i,k− ε for all s > 0. Hence

σ′(s)

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1− ε ∀s≥ T,

which implies

w(t + s)

 ⋃
σ̃ :θ i,k(σ̃)≥θ 0

i,k−ε

S0(σ̃)

> 1−2ε ∀s ∈ [2T,3T ]

and thus
∂Ki,k(θi,k,w(t + s))

∂θi,k
< 0 ∀θi,k ≤ θ

0
i,k + ε∀t ∈ [T,3T ].
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Iterating the same argument, we can show that

∂Ki,k(θi,k,w(t + s))
∂θi,k

< 0 ∀θi,k ≤ θ
0
i,k + ε∀s≥ T.

This implies θ i,k(w(t + s))> θ 0
i,k + ε for all s≥ T , which is a contradiction.

B Uniqueness of Steady State

We provide a sufficient condition for the unique steady state in symmetric games
at A1 = A2 = a in each misspecification.

First-order misspecification. Assume that for any fixed A and θi, Nash equi-
librium of the one-shot game is unique. Assume also that ∂Ui

∂xi
> 0 at x1 = x2 = 0

and that ∂Ui
∂xi

< 0 at some x1 = x2 > 0; this condition ensures that the unique Nash

equilibrium of the one-shot game is interior. By the continuity of ∂Ui
∂xi

, there ex-

ists x1 = x2 => 0 such that ∂Ui
∂xi

= 0; that is, the unique Nash equilibrium of the
one-shot game is symmetric.

Note that steady state is an intersection of asymptotic best response correspon-
dences BR1 and BR2. Hence, the steady state is unique if −1 < BR′i(x j) < 1 for
all i and x j where j , i.

Second-order and one-sided double misspecification. Assume that for any
fixed A and θi, Nash equilibrium of the one-shot game is unique. Assume also
that ∂Ui

∂xi
> 0 at x1 = x̂1 = x2 = 0 and that ∂Ui

∂xi
< 0 at some x1 = x̂1 = x2 > 0; this

condition ensures that the unique Nash equilibrium of the one-shot game is inte-
rior. By the continuity of ∂Ui

∂xi
, there exists x1 = x̂1 = x2 => 0 such that ∂Ui

∂xi
= 0;

that is, the unique Nash equilibrium of the one-shot game is symmetric.
Note that steady state is an intersection of BR12 and NE2(x1). Hence, the

steady state is unique if −1 < BR′12 < 1 for all ( ˆx1,x2) and −1 < NE ′2(x1)< 1 for
all x1.

The conditions and derivations of the uniqueness of one-sided double mis-
specification is the same as that of two-sided misspecification.
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Two-sided double misspecification. Assume that for any fixed Ai and θi, Nash
equilibrium of the one-shot game is unique. Assume also that ∂Ui

∂xi
> 0 at x1 =

x̂2 = x2 = x̂1 = 0 and that ∂Ui
∂xi

< 0 at some x1 = x̂2 = x2 = x̂1 > 0; this condition
ensures that the unique Nash equilibrium of the one-shot game is interior. By the
continuity of ∂Ui

∂xi
, there exists x1 = x̂2 = x2 = x̂1 > 0 such that ∂Ui

∂xi
= 0; that is,

the unique Nash equilibrium of the one-shot game is symmetric. It implies that,
at any steady state, ∂Ui

∂xi
=

∂Û j
∂ x̂ j

= 0 holds only at x1 = x̂2 > 0. Hence, x1 = x̂2 > 0
and x2 = x̂1 > 0 hold at any steady state.

Let NE1(x2) denote the set of steady-state action (x1, x̂2) given x2. Note that
we omit x̂1 because it does not influence (x1, x̂2). Since x1 = x̂2, we omit the
second component, and view NE1 as the set of steady-state action x1. That is,
NE1(x2) is the set of x1 such that x1 = x̂2 is a steady-state action. Define NE2(x1)

in a similar way.
Note that steady state is an intersection of NE1 and NE2, and a sufficient con-

dition for the unique steady state is −1 < NE ′i(x j)< 1 for all i and x j where j , i.
For xi = NEi(x j), FOC must be satisfied:

∂Ui(xi, x̂ j,Ai,θi(xi,x j, x̂ j))

∂xi
= 0.

Using the implicit function theorem with xi = x̂ j = NEi(x j), the slope of NEi(x j)

is

−
∂ 2Ui

∂xi∂θi

∂θi
∂x j

Uii +Ui j +
∂ 2Ui

∂xi∂θi

(
∂θi
∂xi

+ ∂θi
∂x j

)
Here the numerator measures how much ∂Ui

∂xi
changes when x j changes. Since j

is not the opponent of player i, there is only an indirect effect. The denominator
measures how much ∂Ui

∂xi
changes when xi = x̂ j changes. So a sufficient condition

for unique steady state is

−
∂ 2Ui

∂xi∂θi

∂θi
∂x j

Uii +Ui j +
∂ 2Ui

∂xi∂θi

(
∂θi
∂xi

+ ∂θi
∂x j

) ∈ (−1,1)

for all i, j , i, x j, and xi ∈ NEi(x j).
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C Convergence for Examples in Main Text

In this appendix, we check beliefs in each example covered in the main text con-
verge to a steady state.

Example: Equation 7.

Consider the Cournot model in Section 3.2.1. Suppose that the inverse demand
function is given by

Q(x1 + x2,a,θ) = a− (1−θ)(x1 + x2)

and the cost function is linear, i.e., c(xi) = cxi where c ∈ (0,a). Suppose also that
Θ = [−d,d] where d ∈ (0, 1

3) is a fixed parameter. We will show that for each
misspecification, the belief converges to a steady state as long as misspecification
is small (i.e., A is sufficiently close to a).

First-order misspecification and one-sided double misspecification. Since
the inverse demand function Q is linear in θ , the identifiability condition holds,
and hence Proposition 13 ensures that the belief converges almost surely under
first-order misspecification and one-sided double misspecification. In particular,
when the steady state is unique, the belief converges there almost surely regardless
of the initial prior.

Second-order misspecification. To prove convergence for small misspecifica-
tion, it suffices to check the conditions stated in Corollary 4.

Given a misspecified parameter A, let f2(θ̂1,A) denote the set of “steady-state
belief” of player 2, when the hypothetical player’s belief is fixed at θ̂1. In such a
steady state, the incentive-compatibility conditions and the consistency condition
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must be satisfied:40

x1 =
a− c

2(1−θ ∗)
− x2

2
,

x2 =
a− c

2(1−θ2)
− x̂1

2
,

x̂1 =
A− c

2(1− θ̂1)
− x2

2
,

a− (1−θ2)(x̂1 + x2) = a− (1−θ
∗)(x1 + x2).

From the second and the third equations, we have x2 =
2(a−c)

3(1−θ2)
− A−c

3(1−θ̂1)
. Com-

bining it into the first and the third equations,

x1 + x2 =
a− c

2(1−θ ∗)
+

x2

2
=

a− c
2(1−θ ∗)

+
a− c

3(1−θ2)
− A− c

6(1− θ̂1)
,

x̂1 + x2 =
A− c

2(1− θ̂1)
+

x2

2
=

a− c
3(1−θ2)

+
A− c

3(1− θ̂1)
.

Plugging them into the last consistency condition,

a−(1−θ2)(
a− c

3(1−θ2)
+

A− c
3(1− θ̂1)

)−a+(1−θ
∗)(

a− c
2(1−θ ∗)

+
a− c

3(1−θ2)
− A− c

6(1− θ̂1)
)= 0,

which is equivalent to

−(1−θ2)(A− c)
3(1− θ̂1)

+
(1−θ ∗)(a− c)

3(1−θ2)
+

a− c
6
− (1−θ ∗)(A− c)

6(1− θ̂1)
= 0. (58)

40Here we implicitly assume that steady states actions and beliefs are interior points, and this
assumption is without loss of generality. Indeed, it is straightforward to see that player i’s optimal
action is an interior solution given any belief θi and given any action x−i of the opponent; this
immediately implies that steady state actions are interior points. Regarding beliefs, suppose not
and there is f2(θ̂1,A) which contains a boundary point, say θ2 = −d, for some θ ∗, θ̂1 ∈ (−d,d).
Then, from the incentive-compatibility conditions, we have x1 + x2 = a−c

2(1−θ∗) +
a−c

3(1+d) −
A−c

6(1−θ̂1)

and x1+ x̂2 =
a−c

3(1+d) +
A−c

3(1−θ̂1)
. Given these (x1,x2, x̂1), θ2 =−d does not minimize the KL metric;

because there is θ2 ∈ (−d,d) which makes the KL metric equal to zero (note that such θ2 can be
found by solving a− (1−θ2)(x̂1 + x2) = a− (1−θ ∗)(x1 + x2)). This implies that the boundary
point θ2 =−d is not a steady state belief. The same argument is applied to θ2 = d.

In the rest of this appendix, we will assume that other steady states (such as f̂1) are also interior
points, and an argument similar to the one above shows that this assumption is without loss of
generality.
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A steady-state belief f2(θ̂1,A) must be a solution to this equation (58). At A = a,
(58) reduces to

2(1−θ
∗)(1− θ̂1)− (1−θ2)(2−2θ2 + θ̂1−θ

∗) = 0. (59)

Note that for any θ2, θ̂1,θ
∗ ∈ (−d,d), the left hand side of (59) is strictly

decreasing in θ̂1 and θ ∗. When θ̂1 = θ ∗ = d, there is a unique solution θ2 = d.
When θ̂1 = θ ∗ = −d, there is a unique solution θ2 = −d. When θ̂1 ∈ (−d,d)
or θ ∗ ∈ (−d,d), the left hand side of (59) is strictly increasing in θ2, negative at
θ2 = −d and positive at θ2 = d. Hence, the intermediate value theorem ensures
that given any θ̂1,θ

∗ ∈ (−d,d), (59) has an interior solution. Also this solution
is unique, as the left hand side of (59) is strictly increasing in θ2. So in sum, for
each θ̂1, the set f2(θ̂1,A) of steady-state beliefs is non-empty and is a singleton.

Similarly, given a misspecified parameter A, let f̂1(θ2,A) denote the set of
“steady-state belief” of hypothetical player 1, when player 2’s belief is fixed at θ2.
In such a steady state, the incentive compatibility condition and the consistency
condition must be satisfied:

x1 =
a− c

2(1−θ ∗)
− x2

2
,

x2 =
a− c

2(1−θ2)
− x̂1

2
,

x̂1 =
A− c

2(1− θ̂1)
− x2

2
,

A− (1− θ̂1)(x̂1 + x2) = a− (1−θ
∗)(x1 + x2).

The first three equations yield

x1 + x2 =
a− c

2(1−θ ∗)
+

a− c
3(1−θ2)

− A− c
6(1− θ̂1)

,

x̂1 + x2 =
a− c

3(1−θ2)
+

A− c
3(1− θ̂1)

.

Plugging them into the last equation,

A−(1− θ̂1)(
a− c

3(1−θ2)
+

A− c
3(1− θ̂1)

)−a+(1−θ
∗)(

a− c
2(1−θ ∗)

+
a− c

3(1−θ2)
− A− c

6(1− θ̂1)
)= 0,
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which is equivalent to

A−a+
a− c

2
− A− c

3
− (1− θ̂1)(a− c)

3(1−θ2)
+
(1−θ ∗)(a− c)

3(1−θ2)
− (1−θ ∗)(A− c)

6(1− θ̂1)
= 0.

A steady-state belief f̂1(θ2,A) must be a solution to this equation. When A = a,
the equation above reduces to

(a− c)(θ̂1−θ ∗)(1+θ2−2θ̂1)

6(1− θ̂1)(1−θ2)
= 0.

Hence, when Θ = [−d,d] where x ∈ (0, 1
3), θ̂1 = θ ∗ is a unique solution, and the

conditions stated in Corollary 4 are satisfied.

Two-sided double misspecification. To prove convergence for small misspeci-
fication, it suffices to check the conditions stated in Proposition 14.

Given misspecified parameters A1,A2, let f2(θ1) denote the set of “steady-state
belief” of player 2, when player 1’s belief is fixed at θ1. Note that the incentive-
compatibility conditions and the consistency condition are:

x1 =
A1− c

2(1−θ1)
− x̂2

2
,

x2 =
A2− c

2(1−θ2)
− x̂1

2
,

x̂1 =
A2− c

2(1−θ2)
− x2

2
,

x̂2 =
A1− c

2(1−θ1)
− x1

2
,

A2− (1−θ2)(x̂1 + x2) = a− (1−θ
∗)(x1 + x2).

The first four equations imply x̂1 = x2 =
A2−c

3(1−θ2)
and x1 = x̂2 =

A1−c
3(1−θ1)

. Plugging
them into the last equation,

A2−2(1−θ2)
A2− c

3(1−θ2)
−a+(1−θ

∗)(
A1− c

3(1−θ1)
+

A2− c
3(1−θ2)

) = 0,
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which is equivalent to

θ2 = 1− (1−θ1)(1−θ ∗)(A2− c)
(1−θ1)(A2 +3a−4c)− (1−θ ∗)(A1− c)

.

So for any θ1, f2(θ1) is a singleton. Also, at A1 = A2 = a,

∂ f2(θ1)

∂θ1
=− (1−θ ∗)2

(3−4θ1 +θ ∗)2 .

Note that this derivative is negative, and is larger than −1 as θ1,θ
∗ ∈ [−1

3 ,
1
3 ].

Hence, if A1 and A2 are sufficiently close to a, then |∂ f2(θ1)
∂θ1
| ∈ (0,1).

Similarly, given misspecified parameters, let f1(θ2) denote the set of “steady-
state belief” of player 1, when player 2’s belief is fixed at θ2. Then we can show
that f1(θ2) is a singleton for all θ2 and |∂ f1(θ2)

∂θ2
| ∈ (0,1). A proof is similar to that

for f2, and hence omitted.

Example: Equation 8.

Suppose the Cournot model with c(xi) = cxi where c≥ 0, a < 1, Θ = [k−d,k+d]
where k,d > 0 are fixed parameters which satisfy k−d > c, and

Q(x1 + x2,a,θ) = θ − (1−a)(x1 + x2).

First-order misspecification and one-sided double misspecification. Note that
the identifiability condition is satisfied, and hence Proposition 13 implies that the
belief converges almost surely to a steady state.

Second-order misspecification. To prove convergence for small misspecifica-
tion, it suffices to check the conditions stated in Corollary 4.

Given a misspecified parameter A, let f2(θ̂1,A) denote the set of “steady-state
belief” of player 2, when the hypothetical player’s belief is fixed at θ̂1. Note that
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the incentive-compatibility conditions and the consistency condition are:

x1 =
θ ∗− c

2(1−a)
− x2

2
,

x2 =
θ2− c

2(1−a)
− x̂1

2
,

x̂1 =
θ̂1− c

2(1−A)
− x2

2
,

θ2− (1−a)(x̂1 + x2) = θ
∗− (1−a)(x1 + x2).

From the first three equations, we have x̂1 + x2 = θ2−c
3(1−a) +

θ̂1−c
3(1−A) and x1 + x2 =

θ∗−c
2(1−a) +

x2
2 = θ∗−c

2(1−a) +
θ2−c

3(1−a) −
θ̂1−c

6(1−A) . Plugging them into the last equation and
arranging,

θ2 =
θ ∗+ c

2
+

(1−a)(θ̂1− c)
2(1−A)

.

Hence, for any θ̂1, f2(θ̂1,A) is a singleton.
Similarly, given a misspecified parameter A, let f̂1(θ2,A) denote the set of

“steady-state belief” of hypothetical player 1, when player 2’s belief is fixed at
θ2. Note that the incentive-compatibility conditions and the consistency condition
are:

x1 =
θ ∗− c

2(1−a)
− x2

2
,

x2 =
θ2− c

2(1−a)
− x̂1

2
,

x̂1 =
θ̂1− c

2(1−A)
− x2

2
,

θ̂1− (1−A)(x̂1 + x2) = θ
∗− (1−a)(x1 + x2).

The first three equations imply x̂1 + x2 =
θ2−c

3(1−a) +
θ̂1−c

3(1−A) and x1 + x2 =
θ∗−c

2(1−a) +

x2
2 = θ∗−c

2(1−a)+
θ2−c

3(1−a)−
θ̂1−c

6(1−A) . Plugging them into the last equation and arranging,

From them, f̂1(θ2,A) is a solution to

θ̂1 =
6(1−A)

3−4A+a

(
θ ∗

2
− (A−a)c

6(1−A)
− (A−a)(θ2− c)

3(1−a)

)
.
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Hence, for any θ2, f̂1(θ2,A) is a singleton (also f̂1(θ2,A) = θ ∗ at A = a), and the
conditions stated in Corollary 4 are satisfied.

Two-sided double misspecification. To prove convergence for small misspeci-
fication, it suffices to check the conditions stated in Proposition 14.

Given misspecified parameters A1,A2, let f2(θ1) denote the set of “steady-state
belief” of player 2, when player 1’s belief is fixed at θ1. Note that the incentive-
compatibility conditions and the consistency condition are:

x1 =
θ1− c

2(1−A1)
− x̂2

2
,

x2 =
θ2− c

2(1−A2)
− x̂1

2
,

x̂1 =
θ2− c

2(1−A2)
− x2

2
,

x̂2 =
θ1− c

2(1−A1)
− x1

2
,

θ2− (1−A2)(x̂1 + x2) = θ
∗− (1−a)(x1 + x2).

From the first four equations, x̂1 = x2 =
θ2−c

3(1−A2)
and x1 = x̂2 =

θ1−c
3(1−A1)

. Plugging
them into the last equation and arranging,

θ2 =
1−A2

2−a−A2

(
−2c+

(1−a)c
1−A2

+3θ
∗− (1−a)(θ1− c)

1−A1

)
.

Hence, for any θ1, f2(θ1) is a singleton. Also,

∂ f2(θ1)

∂θ1
=− (1−a)(1−A2)

(1−A1)(2−a−A2)
.

Note that this derivative is negative, and is larger than −1 if A1 and A2 are suffi-
ciently close to a. Hence, |∂ f2(θ1)

∂θ1
| ∈ (0,1) for any θ1, θ2, and θ ∗.

Similarly, given misspecified parameters, let f1(θ2) denote the set of “steady-
state belief” of player 1, when player 2’s belief is fixed at θ2. Then an argument
similar to the one above shows that f1(θ2) is a continuous function and |∂ f1(θ2)

∂θ2
| ∈

(0,1).
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Heidhues, P., B. Kőszegi, and P. Strack (2020b): “Overconfidence and Prejudice,”
Working Paper.

Heifetz, A., C. Shannon, and Y. Spiegel (2007): “The Dynamic Evolution of Pref-
erences,” Economic Theory, 32 (2), 251-286.

Hofbauer, J., J. Oechssler, and F. Riedel (2009): “Brown-von Neumann-Nash
Dynamics: the Continuous Strategy Case,” Games and Economic Behavior 65,
406-429.

Hoffman, M. and S.V. Burks (2020): “Worker Overconfidence: Field Evidence
and Implications for Employee Turnover and Firm Profits,” Quantitative Eco-
nomics 11 (1), 315-348.

110



Huffman, D., C. Raymond, and J. Shvets (2019): “Persistent overconfidence and
biased memory: Evidence from managers,” Working Paper.

Jin, G., Luca, M., Martin, D., (forthcoming): “Is No News (Perceived As) Bad
News? An Experimental Investigation of Information Disclosure,” American
Economic Journal: Microeconomics, forthcoming.

Kagel, J.H. and Levin, D. (2002): ‘Common Value Auctions and the Winner’s
Curse.’ Princeton University Press, Princeton.
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