Do “boss effects” exist in Japanese companies?
Evidence from employee–supervisor matched panel data

March 7, 2016

Okajima, Yuko †
Specially Appointed Assistant Professor, Institute for Academic Initiatives,
Osaka University

Matsushige, Hisakazu
Professor, Osaka School of International Public Policy (OSIPP)

Ye, Yuwei
Accenture Japan Ltd

【 Keywords 】Supervisors, Managers, Performance management, Management
development, Human resource development, Personnel management
【 JEL Code 】M12, M54
【 Abstract 】This paper investigates whether bosses can significantly enhance their
subordinates’ performance using an eight-wave panel dataset from a medium-sized
Japanese firm comprising approximately 500 employees. The dataset is of all
regular employees working in one manufacturing company including in both
blue-collar and white-collar occupations of various division: Product, Sales, R&D,
Planning, and Admin. About 40 supervisors were matched to their subordinates,
and the evaluation outcomes were used to evaluate the workers’ performance. The
results showed that ‘boss effects’ were heterogeneous, displayed a one-year lag, and
lasted for 2 years. It was also found that these effects remained significant, even
when employees were assigned new/different supervisors.

* We would like to express our gratitude to company Z for permission to use their data, and to the
members of their Management Division for cooperation with interviews and discussion on the
details of their personnel system.

† Corresponding author. Strategic Planning Office, Institute for Academic Initiatives, Osaka
University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Email: okajima@iai.osaka-u.ac.jp
1 Introduction

Recently, there have been many studies focusing on the reformation of personnel systems. In Japan, the transformation to performance-based systems has been an important issue. However, to increase the efficiency of personnel management, it is inappropriate to focus only on the reform of the personnel system. It is also necessary to focus on “boss effects,” because supervisors including managers play an important role in personnel management.

Do bosses have a positive impact on their subordinates’ performance in Japanese companies? Bosses who perform well in their own jobs will not necessarily improve their subordinates’ performance. It is considered inefficient if bosses have no impact on their subordinates’ performance, in which case the allocation of managers is irrelevant. It is worthwhile to focus on boss effects if managers have the potential to significantly improve their subordinates’ performance. However, little consideration has been given to research on boss effects to date.

There is a considerable amount of literature discussing the impacts of managers or CEOs on corporate behaviour. Bertrand and Schoar (2003) examine manager effects on corporate behaviour in terms of different decision-making behaviours. Kaplan, Klebanov, and Sorensen (2012) examine the particular characteristics of CEOs that are important for corporate governance. Bennedsen (2007) assesses CEO effects on firm outputs. However, most of these studies do not consider the effects of bosses on their workers. Lazear, Shaw, and Stanton (2012) use a boss–worker matched dataset to study boss effects in technology-based jobs, but they do not examine boss effects in white-collar occupations.

The first objective of this study is to investigate whether boss effects exist in both white-collar and blue-collar occupations using a boss–worker matched dataset from a Japanese manufacturing company (hereafter Company Z). In most of manufacturing companies in Japan, permanent employees in a blue-collar occupation are commonly evaluated based on their performance and are subject to the same seniority-based pay system as white-collar workers 1. It is suggested that there may be significant boss effects in Company Z. Furthermore, it seems that the boss effects only become apparent 1 year later (i.e., there is a 1-year lag), and do not disappear immediately when subordinates switch bosses. The second objective is to examine the heterogeneity and trends of boss effects. The analysis in this paper indicates that bosses affect their subordinates heterogeneously due to their personal management styles. Therefore, boss effects will become increasingly significant over time.

The remainder of this paper is structured as follows. Several previous studies on boss effects are

1 Koike (1996) found “the white collarization of blue-collar workers” by focusing on intellectual mastery and kaizen (the concept of continuous improvement in the front-lines of manufacturing processes) among blue-collar workers in large Japanese manufacturing companies. Ishida (1990) studied the distribution of pay levels in blue-collar jobs in Japanese manufacturing companies and concluded that this was both an incentive and a source of management control in the manufacturing process.
introduced in Section 2. The empirical method used to investigate boss effects in this paper is explained in Section 3. The background of the dataset, and descriptions of the key variables, including evaluation outcomes, are presented in Section 4. Section 5 presents the results and discussion. Section 6 concludes.

2 Literature Review

In the field of business management, the role of managers or supervisors and the performance of teams have long been debated in leadership theory. Starting with the Ohio study in the late 1940s, contingency theory and path–goal theory sought to shed light on the relationships between leadership qualities, behaviour, and circumstances. However, these fundamentals of leadership theory have subsequently been extended in numerous ways, and discussion has focused on the changing attitudes of subordinates. In the fields of psychology and organizational behaviour in business management, the subject of supervisory coaching behaviour has been discussed. Although little empirical research measuring leaders’ behaviour and employees’ performance exists, Ellinger, Ellinger, and Keller (2003) examined the links between supervisory coaching behaviour and employee job satisfaction and performance.

Because “firms and employees naturally have opposing interests in that employee effort typically leads to benefits to the firms and costs to the employee” (Lazear and Oyer, 2013, p. 480), incentives, monitoring, and intrinsic rewards are central issues in personnel economics. Since Becker proposed the idea of human capital in 1964, Lazear (1979) and Milgrom and Roberts (1992) have gone on to discuss contract theory, describing the need for purposeful design of compensation and performance systems. The evaluation system is one aspect of employee monitoring, and is usually administered by managers or supervisors. Moreover, in a well-designed incentive scheme, it is the role of the CEO or managers to encourage actions that lead to goal congruence, and they can avoid conflicts of interest by modifying self-interested behaviour on the part of employees.

Most recently, economists have used empirical studies to explore the effects of incentives on employees in relatively controlled settings. Literature in various fields has examined work behaviour and workers’ productivity. Abowd, Kramarz, and Woodcock (2008) developed a method to analyse the relationship between the employer and the employees (job relationship) using prototypical longitudinally linked employer–employee data. First, they introduced two specifications for their linear regression model. One contained the interaction between observable and unobservable characteristics of the individuals and the firms. The other was simpler, only examining the pure person effects and pure firm effects. Their main interest was in person/firm effects and unobservable heterogeneity. In the second step, they focused on a mixed model specification of the pure person effects and pure firm effects models. Finally, they used the estimates of the fixed effects model as a base to investigate the heterogeneity biases in the case where the person effects or the firm effects

2 Fleishman and Harris (1962).
were omitted. They pointed out that the bias from omitting person/firm effects depended on the conditional covariance of the time-varying exogenous characteristics and the dummy variables for the firm/person effects, given the dummy variables for individuals/firms.

Lazear, Shaw, and Stanton (2012) used a similar methodology to investigate boss effects. They examined the supervisors’ impacts on the productivity of workers using a large sample of daily data from technology-based service jobs and found that high-quality bosses could increase teams’ outputs substantially. They also confirmed that the supervisors’ effects on workers’ outputs would persist, given that the bosses increased the workers’ productivity by teaching them new skills. Finally, Lazear, Shaw, and Stanton considered the efficient allocation of bosses. They found that by allocating effective bosses, high-quality workers’ productivity could be increased more than low-quality workers’ productivity. However, they did not investigate boss effects in white-collar occupations or their trends over time.

The recent studies in the field of education, the effect of principals offered insight for studies of “boss effects”. Branch, Hanushek, and Rivkin (2012) provided quantitative evidence of the impact of school principals on student outcomes. They examined variations in the value added by principals by poverty quartile and found that the weakest principals were disproportionately distributed to the poorest schools. They investigated principal effectiveness and found that a high-quality principal could raise student outcomes above the annual average for all students in the school. They argued that principals influenced the students’ outcomes by the way in which they utilized the teaching staff.

As noted, the relationship between principal quality and student outcomes in schools is similar to that between CEO quality and workers’ productivity. While Branch, Hanushek, and Rivkin (2012) focused on the impact of principal quality, they did not consider the impacts of the teachers, who influenced the students directly. In other words, they did not examine the effects on workers’ outputs of their direct bosses.

Rockoff (2004) investigated the extent to which teacher qualities influence students’ achievement using a student–teacher matched panel dataset. He used test scores for vocabulary, reading comprehension, mathematical computation, and mathematical concepts to measure student achievement. Rockoff used a random effects meta-analysis approach to confirm the existence of teacher effects. The results of F-tests indicated that teacher effects were significant determinants of students’ test scores. Rockoff calculated both the raw standard deviation and the estimated underlying standard deviation of teacher fixed effects. Although the adjusted standard deviation was lower than the raw one, it suggested that teacher qualities affected students’ achievement substantially. Furthermore, Rockoff proposed a correlation between teaching experience and student achievement. He assumed that the teachers’ years of experience would have no impact on students’ test scores when they exceeded a certain cutoff point. Strong evidence of gains from teaching experience was found in relation to vocabulary after controlling for teachers’ fixed effects. The marginal return of teaching experience was positive, but gradually declined as the years of experience increased until reaching the cutoff point.

The application of an econometric methodology to analyse the relationship between a pair of actors is not confined to the field of education. It can also be applied to the field of sports to analyse
coaches’ effects on players’ performance. The first study to provide empirical evidence of the robustness of estimates of coaching efficiency using English Football Association data was conducted by Dawson, Dobson, and Gerrard (2000), who used match outcomes to measure team performance. Dawson, Dobson, and Gerrard used transfer values as the index of players’ talent. They utilized the players’ characteristics, including coaching input, to estimate values so that the indirect impacts of coaching could be captured. They found that estimates of coaching efficiency were sensitive to the choice of time-invariant efficiency models versus time-varying and inefficiency effect models. The results were also sensitive to the inclusion of ex post financial input, namely wage expenditure. Nevertheless, Dawson, Dobson, and Gerrard did not check for impacts on individual team members.

Researchers tend to investigate the factors leading to differences in boss effects after confirming their existence, and there is a wide range of studies analysing management styles. Bertrand and Schoar (2003) constructed a panel dataset that matched managers and firms so that they were able to track the managers when they changed firms over time. This dataset was used to investigate whether and how managers influenced corporate decision-making processes. They found considerable heterogeneity among managers. Bertrand and Schoar examined manager fixed effects while controlling for firm fixed effects. Using F-tests for manager fixed effects, they found that the managers had a significant effect on a wide range of corporate decisions, including investment and acquisition decisions. They also utilized the size distribution to compare the magnitude of manager fixed effects and showed that some managers had a significant impact on corporate performance. In addition, they analysed the relationship between managerial styles and observable managerial characteristics, MBA graduation, and birth cohort. It was suggested that managers from earlier birth cohorts were more conservative financially. Nonetheless, managers who had graduated from MBA programs would make more aggressive decisions on average. Although Bertrand and Schoar confirmed the manager effect on corporate decision-making, they did not deal with the impacts on workers of different management styles.

Borghans, Weel, and Weinberg (2008) considered a framework of interpersonal skills including caring and directness. Their analysis used a longitudinal dataset to examine the impact of individuals’ sociability in their youth on their job choices in later years. Their results showed that those who were sociable when they were 16 years old tended to choose jobs emphasizing interpersonal interactions. Borghans, Weel, and Weinberg investigated the relationship between interpersonal style and labour market consequences using British and German data. They found that directness provided higher returns than caring in terms of wages earned in both countries. They also found that workers were most productive when they were assigned to jobs that best matched their interpersonal styles. Although Borghans, Weel, and Weinberg examined workers’ wage premiums as a result of their interpersonal styles, they did not investigate the relationship between workers’ productivity and their bosses’ personal management styles.

3 Framework of Analysis
Here, empirical models are developed to investigate whether boss effects exist in Company Z. The main models used in this paper are ordered probit models, which analyse the pooled data, and panel ordered probit models, which control for personal effects. Using time-series data, panel estimation eliminates both negative correlation and spurious correlation. It is possible to hypothesize individual personal effects, which are normally unobservable. As the goal of this study was to prove the existence of boss effects on subordinates’ performance, the dependent variable was the evaluation outcome, which represented the level of employee performance. In addition, the independent variable included dummy variables for the supervisors who evaluated their subordinates’ performance, and we hypothesized the existence and heterogeneity of boss effects in each evaluator. Because working with high-performing colleagues tends to improve the performance of lower-performing employees, the peer effect was also included as an independent variable.

3.1 Ordered Probit Model

The evaluation outcome is not a continuous variable, but rather a discrete variable, ranked from 1 to 5 in ascending order of employee performance. Therefore, first, the changes in the possibility of being rated more highly are examined using pooled data via an ordered probit model. The performance of each worker is assumed to be a continuous latent variable \(y_i^* \), which is unobservable and specified as follows:

\[
y_i^* = X_i \zeta + W_i \eta + \text{BOSS}_i \theta + \varepsilon_i.
\]

where \(y_i^* \) stands for the performance of worker \(i=1,\ldots,N \), and \(X_i \) is a vector of exogenous personal characteristics for worker \(i \) including age, gender, and years of schooling. To isolate boss effects from department effects, \(W_i \) is controlled for in the model. \(W_i \) describes the working environment of worker \(i \), including the peer effects of his or her colleagues. \(\text{BOSS}_i \) is a vector of indicator variables, regarded as boss effects for worker \(i \). \(\text{BOSS}_{ij} \), which is an element of \(\text{BOSS}_i \), is 1 if the assessor of worker \(i \) is \(j \) \((j=1,\ldots,Z)\), and 0 otherwise. The error term \(\varepsilon_i \) has a standard normal distribution and are assumed to have the following properties:

\[
E(\varepsilon_i | X_i, W_i, \text{BOSS}_i) = 0, \quad \text{Cov}(\varepsilon_m, \varepsilon_n | X_i, W_i, \text{BOSS}_i) = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}.
\]

However, we can observe \(y_i \) instead of \(y_i^* \), where the evaluation outcome takes values of 1, 2, 3, 4, or 5 according to the following rules, in which \(k_1 \) is the cutoff point:

\[
y_i = 1 \text{ if and only if } k_0 < y_i^* \leq k_1 \]
\[
\vdots
\]
\[
y_i = 5 \text{ if and only if } k_4 < y_i^* \leq k_5
\]

Because the error terms are assumed to be independent and identically normally distributed according to Equation (2), the probability of being rated at the rth rank \((r=1,\ldots,5)\) is defined as follows:

\[
P(y_i = r) = \Phi(k_r - X_i \zeta - W_i \eta - \text{BOSS}_i \theta) - \Phi(k_{r-1} - X_i \zeta - W_i \eta - \text{BOSS}_i \theta). \]

(4)
Then, we can calculate the log-likelihood function using Equation (4), where $d_{ir} = 1$ if $y_i = r$. Finally, the estimates of the parameters $\beta, \alpha,$ and γ can be calculated as follows:

$$
\ln L(\beta, \alpha, \gamma, k1, \ldots, k4|y_i, X_i, WE_i, BOSS_i) = \sum_{i=1}^{N} \ln P(y_i = r) = \sum_{i=1}^{N} \sum_{r=1}^{5} d_{ir} \times \ln[\Phi(k_r - X_i \zeta - WE_i \eta - BOSS_i \theta) - \Phi(k_{r-1} - X_i \zeta - WE_i \eta - BOSS_i \theta)].
$$

(5)

3.2 Panel Ordered Probit Model

Although an ordered probit model can provide evidence of boss effects using pooled data, it cannot control for personal effects such as initial ability. To control for personal effects, researchers (Bertrand and Schoar (2003), Laezar, Shaw and Stanton (2012)) tend to employ a fixed effects model. However, a fixed effects model does not fit discrete dependent variables. Hence, we introduce a panel ordered probit model, in which personal effects can be controlled for when the dependent variable is considered to be discrete.

Similar to an ordered probit model, the performance of worker i in year t is considered to be a continuous latent variable, y_{it}^*, as follows:

$$
y_{it}^* = X_{ijt} \zeta + WE_{ijt} \eta + BOSS_{jt} \theta + \psi_i + \nu_{it},
$$

(6)

where $i=1,\ldots,N$ and $t=2008,\ldots,2013$. The definitions of X_{ijt} and WE_{ijt} are the same as those in the ordered probit model. $BOSS_{jt}$, an element of $BOSS_i$, equals 1 if the assessor of worker i in year t is j ($j=1,\ldots,Z$). ψ_i is defined as worker i’s random personal effect. ν_{it} refers to the term error. ν_{it} has a standard normal distribution and conforms to the following assumptions:

$$
E(\nu_{it} | X, WE, BOSS) = 0, \text{Cov}(\nu_{mt}, \nu_{nt} | X, WE, BOSS) = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}, \text{Cov}(\nu_{it}, \psi_i | X, WE, BOSS) = 0.
$$

(7)

The observable discrete dependent variable y_{it} is the evaluation outcome, which takes values of 1 to 5 and follows similar rules to Equation (3). Compared with Equation (4), the possibilities of being rated at the rth rank after controlling for personal effects is defined as follows:

$$
P(y_{it} = r) = \Phi(k_r - X_{ijt} \zeta - WE_{ijt} \eta - BOSS_{jt} \theta - \psi_i) - \Phi(k_{r-1} - X_{ijt} \zeta - WE_{ijt} \eta - BOSS_{jt} \theta - \psi_i).
$$

(8)

Based on Equation (8), we can obtain the following log-likelihood function for each worker i, $i=1,\ldots,N$:

\[nL(\zeta, \eta, \theta, k_1, \ldots, k_4) = \sum_{t=1}^{T} \sum_{r=1}^{5} \left[d_r(y_{it}) \times \ln P(y_{it} = r) \right] = \sum_{t=1}^{T} \sum_{r=1}^{5} \left[d_r(y_{ijt}) \times \ln \Phi(k_r - X_{ijt}\zeta - WE_{ijt}\eta - BOSS_{ijt}\theta - \psi_i) \right] \Phi(k_{r-1} - X_{ijt}\zeta - WE_{ijt}\eta - BOSS_{ijt}\theta - \psi_i) \right]. \] (9)

In Equation (9), \(d_r(y_{ijt}) \) equals 1 if the evaluation outcome of worker \(i \) in year \(t \) is \(r \). The estimates can be obtained using the above equation.

3.3 Likelihood-Ratio Test

To investigate the existence and heterogeneity of boss effects, we employ the likelihood-ratio test after estimating the models as outlined above. The likelihood-ratio test utilizes the log-likelihoods of the unrestricted and restricted models to test whether the restricted model is justified. Setting \(\theta_1 \) as a base group for the boss dummy, the null hypothesis to test for heterogeneity in boss effects is defined as follows:

\[H_0: \theta_2 = \theta_3 = \cdots = \theta_Z. \]

The test statistic of the likelihood-ratio test is

\[LR = -2(\ln L_{\text{restricted}} - \ln L_{\text{unrestricted}}), \]

where \(\ln L_{\text{restricted}} \) and \(\ln L_{\text{unrestricted}} \) are defined as the log-likelihood values of the restricted model and the unrestricted model, respectively. Under the null hypothesis, the test statistic LR will approximately follow the \(\chi^2 \) distribution with \(df_{\text{unrestricted}} - df_{\text{restricted}} \) degrees of freedom, where \(df_{\text{unrestricted}} \) and \(df_{\text{restricted}} \) are the degrees of freedom of the models.

4 Data

4.1 Background of Company Z

We use the boss–worker matched micro personnel dataset of Company Z from 2008 to 2013 so that we can analyse boss effects using information on both the bosses and their subordinates. Company Z is a regional Japanese consumer products company that has operated for nearly 100 years. It has continuously expanded its scale, and its annual revenue rose from 36 billion yen in 2008 to 51 billion yen in 2012. Currently, Company Z is one of the leading companies in its field, and supplies its products to customers throughout Japan. The number of regular employees in this company increased by 40% during the 5-year period 2008–2013, from 310 in 2008 to 440 in 2013.

Company Z has a production division that contains employees about 20% to 40% of all regular

3 For the first 3 years, blue-collar employees represented about 20% of all regular employees. In 2011, when an additional factory was built, the number of blue-collar employees rose to nearly 40% of all regular employees.
employees. The ratio of blue-collar employees working on the production line, including the bottling process, accounts for approximately 30% of all regular employees over an entire period. Around 25% of all regular employees belong to the sales division, approximately 12% belong to the R&D division, including R&D and the quality assurance department, and around 10% belong to the planning (new business) division. Other minor divisions, namely, the administrative division and the food service division, comprise less than 5% of all employees each.

The employees’ performance is used as the criterion for the evaluation of outcomes. The employees are rated on a scale of 1 to 5, which, in ascending order, represent rankings of C (poor performance), B (not meeting requirements), AB (fulfilling requirements), A (above requirements), and S (outstanding performance), respectively. The ratings distribution within each department or division is never regulated. The assessors of the employees’ performance are their direct supervisors, because they train and supervise their subordinates. In this paper, the term “bosses” mentioned refers to these direct supervisors.

The mechanism for evaluating the performance of employees is as follows. The evaluation system was comprised of two parts: behaviour evaluation and achievement evaluation. With regard to behaviour evaluation, specific behaviour-evaluation items were distilled based on competency, consistency, and conformity with the firm’s philosophy, management policy, and behavioural guidelines. Achievement evaluation was assessed based on performance in the management by objectives (MBO) system. The MBO system and operating rules were reformed to foster goal sharing among top-ranking managers and employees. Individual goals were linked to workplace goals, which were extensions of division or company goals.

This evaluation system was introduced in April 2007 as a reform of the former system. At the same time, they introduced a reformed MBO system. The evaluation outcomes used in this study are all based on the reformed system. Company Z also tried to ensure the transparency of their new personnel system. Training for assessors under the new evaluation system was carried out every year after its launch. This training was aimed at deepening the understanding of the evaluation items in the new employee evaluation system, and consisted of lectures and practical training in the evaluation methods. The company gathered voice of employees through the CEO-members group interviews.

4.2 Summary Statistics

The dataset used in this study comprises 2263 observations of regular employees from 2008 to 2013, including 1093 observations of employees whose bosses were different from the previous year. This dataset provides the foundation to analyse boss effects.

First, the dependent variable needs to be considered. Here, the evaluation outcomes are used as the dependent variable. It is assumed that all workers are evaluated objectively based on the evaluation rules introduced above. Lazear, Shaw, and Stanton (2012) used the outputs of technology-based service jobs as the dependent variable to measure productivity. However, this method was of limited value in blue-collar occupations. Hence, this study uses the evaluation outcomes as the dependent variable, so that productivity in white-collar occupations can also be measured.
In this micro personnel dataset, 2016 observations have evaluation outcomes. These outcomes are ranked from 1 to 5, where a rank of 5 refers to the best outcomes. As can be seen in Table 1, the mean evaluation outcome of employees is 3.76. This indicates that on average, both blue-collar and white-collar employees are rated at the 3rd rank (AB). This is further illustrated by the left-skewed distribution of evaluation outcomes shown in Figure 1. However the distribution of evaluation outcomes is varied in its shape, especially in year 2011, every distributions is still similar left-skewed as shown in Figure 2.

Second, the list of personal characteristics can be seen in Table 1. The average age of the subjects in this study is about 33 years, and 26% are female. There is obvious polarization in employees’ educational backgrounds. To enable quantitative control, educational background is translated into years of schooling, which is a continuous variable. As can be seen in Table 1, most of the employees have been educated for 14 years, which suggests attainment of either a high school or technical college diploma. This may be the result of the existence of large numbers of factory workers and senior employees who joined the company as blue-collar employees and rose to become managers. Furthermore, peer effects are also controlled for as a characteristic of the working environment. Peer effects are calculated as the average evaluation outcomes of colleagues of the individuals concerned, and have a mean of 3.7. Because this study investigates lagged boss effects, the lagged characteristics are also controlled for in the analysis.

During this analysis, considerable attention must be paid to the endogeneity problem. For example, better bosses may be assigned to supervise more workers and the time for teaching per subordinates gets lower, which would create a downward bias in the observed effect on subordinates’ performance. Alternatively, high-performing subordinates may be assigned to effective bosses, which would create an upward bias in the observed effect of subordinates’ performance.

5 Results

5.1 Heterogeneity in Boss Effects

The results shown in Table 2 indicate that bosses have an impact on their subordinates’ evaluations. Panel A shows the results for the ordered probit model using pooled data. Panel B shows

4 Educational attainment is classified into eight categories: secondary school, technical and vocational training school, high school, special vocational school, junior college, technical college, university, and postgraduate education (e.g., master’s degree and/or doctorate).

5 Since Company Z is a typical Japanese manufacturing company, they provides a career path to the management level for high-performing blue-collar employees.
the results of the panel ordered probit model, which takes personal effects into account. The dependent variables of estimation in Table 2 are the same (i.e., the employees’ evaluation outcomes), taking values of 1–5. However, the independent variables that are controlled vary. Estimations A0 and B0 control the boss dummies and peer effects of department in the year of the workers’ performances are evaluated. The boss dummies and peer effects that are controlled for in Estimations A1 and B1 and Estimations A2 and B2 are 1- and 2-year lagged, respectively. For example, in Estimations A0, A1, and A2, worker i’s boss dummies in 2010, 2009, and 2008, respectively, are controlled for if the dependent variable takes the value of his or her evaluation outcome in 2010.

The likelihood-ratio test is used to confirm the existence of boss effects and variations in boss effects among bosses. As can be seen in Table 2, the null hypothesis that boss effects do not differ from boss to boss is rejected at the 5% significance level in Estimations A1, A2, B1, and B2. These results illustrate that 1- and 2-year lagged boss effects both vary significantly from boss to boss when previous working environment characteristics are controlled for, regardless of whether individual effects are controlled for or not. It is therefore suggested that time-lagged boss effects exist in Company Z.

The results indicate that bosses who have supervised them previously have an impact on workers’ current performance. In other words, boss effects become apparent a year later, and last for more than 2 years, which may be considered to be the consequence of teaching. This result is in line with the findings of Lazear, Shaw, and Stanton (2012) and Ellinger and Keller (2003), who suggested that one of the basic activities of bosses is teaching, the effects of which can persist over time. Boss effects can last for a long period of time in employees’ careers due to the effects of skill transfer and good working habits learned from their bosses.

The variation in lagged boss effects among bosses is still observed when the workers’ personal effects are controlled for in Estimations B0, B1, and B2, as seen in Table 2. This indicates that the variation in boss effects is not caused by the different characteristics of the workers themselves, but by the consequences of the personal management styles of previous bosses. The rejection of the null hypothesis at the 1% significance level in Estimations B1 and B2 indicates that boss effects from previous bosses are heterogeneous. In other words, the heterogeneity of boss effects becomes apparent a year later and lasts for at least 2 years owing to the different management styles of bosses. The finding that current bosses do not have an impact on workers’ performance suggests that the impact of bosses through, for example, teaching may require considerable time.

(place Table 2 here)

5.2 How do Boss Effects Change?

The analysis outlined above confirms that boss effects may vary from boss to boss, even during the same period. Therefore, we need to investigate the relationship between current boss effects and the lagged boss effects. How do boss effects change over time? In order to investigate changes in boss effects, we compare the p-values of the likelihood-ratio tests of all estimations, because the
p-values of likelihood-ratio tests indicate the strength of the restrictions. As can be seen in Table 26, the p-value for the likelihood-ratio test in Estimation B_0 is the largest among Estimations B_0–B_2. This suggests that boss effects are becoming more significant over time, i.e., bosses are having a greater impact on their subordinates’ performance. This finding seems reasonable if the workers are supervised by the same bosses across different periods, because the bosses can reinforce their impact over a longer period.

5.3 Robustness Check

This study uses different samples to investigate the robustness of the results outlined above. In one sample, the workers switch bosses during the previous year, while in the other sample, the workers switch bosses from 2 years earlier. Table 3 shows the results. It is found that the null hypothesis is rejected at the 1% significance level in the sample in which the workers switch bosses during the previous year (B_{d1}) and at the 10% significance level in the sample in which the workers switch bosses from 2 years earlier (B_{d2}). These results indicate that boss effects vary from boss to boss regardless of whether the workers switch bosses; that is, the results confirming the existence and heterogeneity of boss effects are robust.

As can be seen in Table 3, the lagged boss effects can last even when the worker switches bosses. That is, boss effects remain robust after eliminating the fixed optimistic evaluations under same pair of a supervisor and a subordinate.

It can be seen from Table 2 that the p-value of the likelihood-ratio test in Estimation B_0 is the largest among the three estimations B_0–B_2, while the p-values of the likelihood-ratio test in Estimations B_1 and B_2 are nearly the same. This result is in line with that for Estimations A_0–A_2 in Table 2. However, a slightly different result is shown in Table 3, where it can be seen that the p-value of the likelihood-ratio test in Estimation B_{d1} is much smaller than that in Estimation B_{d2}. This indicates that the 1-year lagged boss effects are more significant than the 2-year lagged boss effects when the workers switch bosses. Because the workers have different bosses over a 2- or 3-year period, the bosses cannot maintain their impact. Hence, the boss effects are less significant over time.

(Place Table 3 here)

6 Conclusion

The primary objective of this study is to document the existence and heterogeneity of boss effects in a single Japanese company. We use an ordered probit model to analyse the pooled data and a panel ordered probit model to investigate the boss effects after controlling for personal effects. The

6 Because workers’ individual effects are controlled for in the panel ordered probit model, the results of the panel ordered probit model are more convincing than those of the ordered probit model. Therefore, we focus on the panel ordered probit model when comparing the p-values of the likelihood-ratio tests.
analysis results in two findings. First, it is found that previous bosses have a significant impact on their subordinates’ evaluation outcomes. Furthermore, these boss effects last for at least 2 years, because a part of these effects is the consequences of teaching. In other words, in the first year, bosses do not have a teaching or coaching effect. Along with the finding of former literature that examined 6- and 12-month lagged boss effects, this study demonstrated the boss effects lasting even longer term as proving the 2-year lagged boss effects. Second, there are significant variations in boss effects in the second year after a change of boss. This suggests that boss effects vary from boss to boss, because each boss has his or her own management style.

These results have some implications for company management. Because the boss effects exist from the second year and last for at least for 2 years, it would seem better to focus on the training of bosses to improve their subordinates’ performance. Further to the findings of previous studies that examined six-month and 12-month lagged boss effects, this study demonstrated that the boss effects last for even longer periods of time, as proved by the 2-year lagged boss effects. This is mainly due to the bosses’ teaching activities. Therefore, those workers whom the company expects to promote to supervisory positions should have both sophisticated professional skills and excellent teaching skills. In addition, each boss has a unique way of supervising and training his or her subordinates. Hence, it is likely that boss effects will be improved by increasing communication among bosses such that they can share their experiences and learn from one another. Because coaching skills represent another important factor that has an effect on subordinates’ performance, boss effects will also be improved by training bosses in communication skills. Finally, it is better to focus not only on employees’ current bosses, but also on their previous ones. Furthermore, it is better if workers do not switch bosses frequently, such that the bosses have sufficient time to reinforce their impact on their subordinates.

Although this study investigates the existence, heterogeneity, and trends of boss effects in both white-collar and technology-based jobs, there are several limitations in the analysis. It is difficult to discuss and compare boss effects in technical occupations with those in white-collar occupations such as those in the sales division, R&D division, and planning division, because the sample size of the data used in this paper is not large enough to be divided into two parts. Additionally, although the evaluation outcomes can capture not only the results of performance but also the workers’ attitudes during the process, the evaluation outcomes as a surrogate variable of performance may be limited by the evaluation distribution. As a result, the evaluation outcomes may reflect the relative performance results rather than the absolute ones. These limitations will be addressed in future studies.

Reference

Figure 1: Distribution of evaluation outcomes

![Distribution of evaluation outcomes](image1)

Evaluation Outcomes

Figure 2: Distribution of evaluation outcomes in each year

![Distribution of evaluation outcomes in each year](image2)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation</td>
<td>Evaluation outcome of the employee</td>
<td>2,016</td>
<td>3.76</td>
<td>0.74</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Personal Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Age of the employee (at the time evaluated)</td>
<td>2,102</td>
<td>33.28</td>
<td>10.59</td>
<td>18.2</td>
<td>59.3</td>
</tr>
<tr>
<td>Age (squared)</td>
<td>Squared value of age of the employee (at the time evaluated)</td>
<td>2,102</td>
<td>1219.66</td>
<td>803.52</td>
<td>330.0</td>
<td>3510.6</td>
</tr>
<tr>
<td>Gender</td>
<td>Gender of the employee</td>
<td>2,283</td>
<td>0.26</td>
<td>0.44</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Years of Schooling</td>
<td>Schooling years of the employee</td>
<td>2,276</td>
<td>14.04</td>
<td>2.38</td>
<td>9.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Working Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation_Peers</td>
<td>Average evaluation outcomes of colleagues</td>
<td>2,229</td>
<td>3.75</td>
<td>0.34</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Evaluation_Peers_lag1</td>
<td>Average evaluation outcomes of colleagues 1 year lagged</td>
<td>1,771</td>
<td>3.74</td>
<td>0.32</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Evaluation_Peers_lag2</td>
<td>Average evaluation outcomes of colleagues 2 years lagged</td>
<td>1,333</td>
<td>3.72</td>
<td>0.33</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Subsize</td>
<td>Scale of the departement in which the employee works</td>
<td>2,102</td>
<td>24.83</td>
<td>22.76</td>
<td>1.0</td>
<td>76.0</td>
</tr>
<tr>
<td>Subsize_lag1</td>
<td>Scale of the departement in which the employee works 1 year lagged</td>
<td>1,918</td>
<td>24.64</td>
<td>21.62</td>
<td>1.0</td>
<td>76.0</td>
</tr>
<tr>
<td>Subsize_lag2</td>
<td>Scale of the departement in which the employee works 2 years lagged</td>
<td>1,499</td>
<td>24.36</td>
<td>20.99</td>
<td>1.0</td>
<td>76.0</td>
</tr>
</tbody>
</table>
Table 2: Regressions of evaluations using the ordered probit model and the panel ordered probit model

<table>
<thead>
<tr>
<th>Variable</th>
<th>PANEL A: Ordered Probit Model</th>
<th>PANEL B: Panel Ordered Probit Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A0 Base-year data A1 1-year lagged data A2 2-year lagged data</td>
<td>B0 Base-year data B1 1-year lagged data B2 2-year lagged data</td>
</tr>
<tr>
<td>Age</td>
<td>0.129* (0.028) 0.128* (0.035) 0.142* (0.033)</td>
<td>0.136* (0.045)</td>
</tr>
<tr>
<td>Age (squared)</td>
<td>-0.002* (0.000) -0.002* (0.000) -0.002* (0.0002)</td>
<td>-0.002* (0.001)</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.046 (0.081) -0.124 (0.092) -0.120 (0.110)</td>
<td>-0.031 (0.033) -0.148 (0.105) -0.165 (0.139)</td>
</tr>
<tr>
<td>Years of Schooling</td>
<td>-0.042** (0.017) -0.017 (0.019) -0.024 (0.022)</td>
<td>-0.043*** (0.022) -0.015 (0.022) -0.019 (0.028)</td>
</tr>
<tr>
<td>Blue Collar Dummy †</td>
<td>0.009 (0.099) -0.099 (0.108) -0.064 (0.120)</td>
<td>-0.041 (0.119) -0.149 (0.120) -0.161 (0.148)</td>
</tr>
<tr>
<td>Peer Effect</td>
<td>1.818* (0.123) 0.208* (0.130)</td>
<td>-0.172 (0.137)</td>
</tr>
<tr>
<td>Peer Effect -1</td>
<td>-0.109 (0.132)</td>
<td></td>
</tr>
<tr>
<td>Peer Effect -2</td>
<td>0.240 (0.182)</td>
<td>-0.024 (0.186)</td>
</tr>
<tr>
<td>Assessor Dummies</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Assessor Dummies -1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Assessor Dummies -2</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Year Dummies ‡</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Likelihood-ratio test for null hypothesis: Boss effects are equal to each other among bosses. (θ2=θ3=...,θZ) (θ2=θ3=...,θZ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR chi2 statistic</td>
<td>45.11 78.29 82.23 22.63 76.66 72.69</td>
<td>72.69</td>
</tr>
<tr>
<td>Prob > chi2</td>
<td>0.232 0.000 0.000 0.983 0.000 0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-1423.829 -1171.069 -816.224 -1422.509 -1171.386 -817.303</td>
<td>-817.303</td>
</tr>
<tr>
<td>Pseudo R2</td>
<td>0.133 0.0513 0.085</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1,523 1,137 825 1,523 1,137 825</td>
<td>825</td>
</tr>
<tr>
<td>Number of id</td>
<td>403 367 352</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* p<0.01, ** p<0.05, *** p<0.1
Table 3: Estimation using the sample in which workers have different bosses from the previous year (Panel Bd1) and from two years ago (Panel Bd2)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bd1 1-year lagged data</th>
<th>Bd2 2-year lagged data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.057</td>
<td>0.136*</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>Age (squared)</td>
<td>-0.001***</td>
<td>-0.002*</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.182</td>
<td>-0.146</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.142)</td>
</tr>
<tr>
<td>Years of Schooling</td>
<td>0.012</td>
<td>-0.042</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Blue Collar Dummy †</td>
<td>-0.075</td>
<td>-0.226</td>
</tr>
<tr>
<td></td>
<td>(0.146)</td>
<td>(0.164)</td>
</tr>
<tr>
<td>Peer Effect -1</td>
<td>-0.140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td></td>
</tr>
<tr>
<td>Peer Effect -2</td>
<td></td>
<td>0.417***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.219)</td>
</tr>
<tr>
<td>Assessor Dummies -1</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Assessor Dummies -2</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Year Dummies ‡</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Likelihood-ratio test for null hypothesis:

Boss effects are equal to each other among bosses. \((θ_2=θ_3=…=θ_Z)\)

LR chi2 statistic	69.81	47.11
Prob > chi2	0.001	0.067
Log Likelihood	-724.395	-545.589
Observations	708	463
Number of id	321	279

Standard errors in parentheses
* p<0.01, ** p<0.05, *** p<0.1